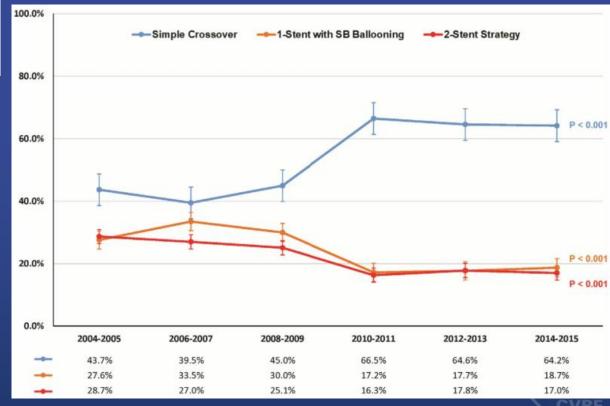
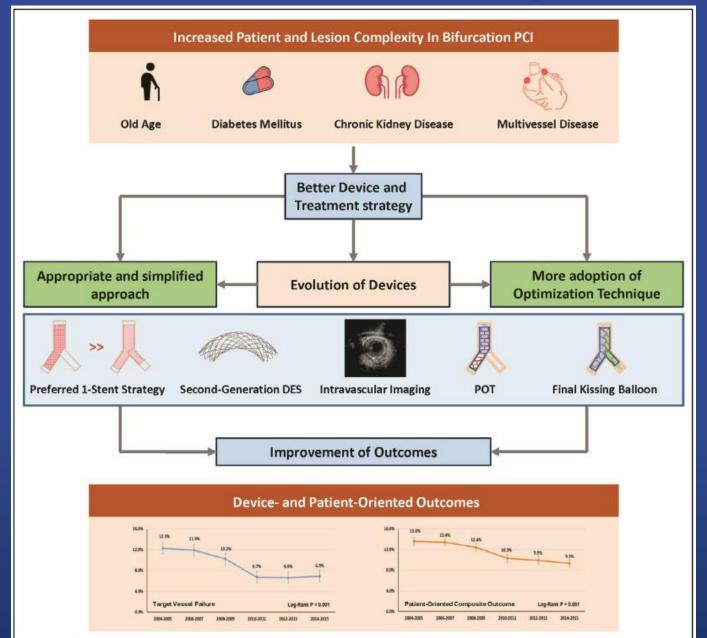

Coronary Bifurcation PCI



Ten-year trends in coronary bifurcation PCI


Changes in Lesion Characteristics

Changes in Treatment Strategy trends

Ten-year trends in coronary bifurcation PCI

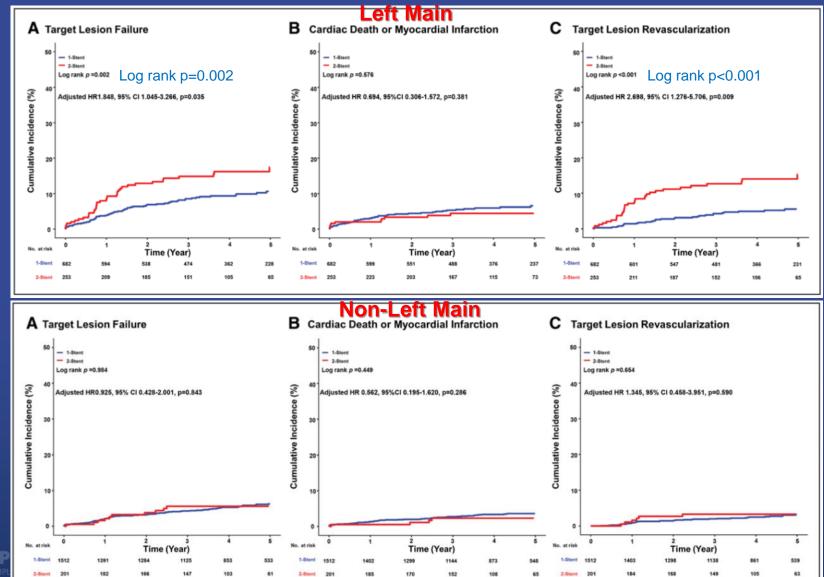
LM vs. Non-LM Bifurcation

Procedural Characteristics

	Left Mai	n Bifurcation (N=9	35)	Non-Left Main Bifurcation (N=1713)			
Variables	1-Stent (N=682)	2-Stent (N=253)	P Value	1-Stent (N=1512)	2-Stent (N=201)	P Value	
Treatment strategy			<0.001			<0.001	
1-stent without side branch ballooning	489 (71.7%)	0 (0%)		1196 (79.1%)	0 (0%)		
1-stent with side branch ballooning	193 (28.3%)	0 (0%)		316 (20.9%)	0 (0%)		
Crush	0 (0%)	142 (56.1%)		0 (0%)	102 (50.7%)		
T-stenting or TAP	0 (0%)	60 (23.7%)		0 (0%)	65 (32.3%)		
Culottes	0 (0%)	16 (6.3%)		0 (0%)	15 (7.5%)		
Kissing or V stenting	0 (0%)	26 (10.3%)		0 (0%)	15 (7.5%)		
Others	0 (0%)	9 (3.6%)		0 (0%)	4 (2.0%)		
No. of used stent	1.7±0.9	2.6±1.0	<0.001	1.6±0.9	2.3±1.1	<0.001	
Stent type			0.161			0.011	
Everolimus-eluting stents	367 (53.8%)	131 (51.8%)					
Zotarolimus-eluting stents	164 (24.0%)	69 (27.3%)					
Biolimus-eluting stent	132 (19.4%)	40 (15.8%)		317 (21.0%)	25 (12.4%)		
Mixed or other stents	19 (2.8%)	13 (5.1%)		81 (5.4%)	9 (4.5%)		
IVUS guidance	427 (62.6%)	172 (68.0%)	0.148	389 (25.7%)	75 (37.3%)	0.001	
Final kissing ballooning	163 (23.9%)	233 (92.1%)	<0.001	228 (15.1%)	165 (82.1%)	<0.001	
POT(proximal optimization technique)	237 (34.8%)	56 (22.1%)	<0.001	394 (26.1%)	52 (25.9%)	>0.999	
Re-POT	25 (3.7%)	48 (19.0%)	<0.001	23 (1.5%)	27 (13.4%)	<0.001	
NC balloon use	162 (23.8%)	87 (34.4%)	0.001	228 (15.1%)	57 (28.4%)	<0.001	

LM vs. Non-LM Bifurcation

Cumulative Incidence of Adverse Events at 5 Years


	All Pa	atients (N=2648)	Left Main Bifurcation (N=935)			Non-Left Main Bifurcation (N=1713)		
	1-Stent (N=2194)	2-Stent (N=454)	P Value	1-Stent (N=682)	2-Stent (N=253)	P Value	1-Stent (N=1512)	2-Stent (N=201)	P Value
TLF*	137 (7.6%)	47 (12.1%)	<0.001	60 (10.6%)	37 (17.4%)	0.006	77 (6.3%)	10 (5.6%)	0.950
Cardiac death or MI	84 (4.5%)	14 (3.5%)	0.536	38 (6.6%)	10 (4.4%)	0.355	46 (3.6%)	4 (2.3%)	0.453
All-cause death	94 (5.1%)	20 (5.4%)	0.814	40 (7.1%)	11 (5.2%)	0.418	54 (4.2%)	9 (5.5%)	0.505
Cardiac death	55 (3.0%)	8 (2.0%)	0.416	25 (4.5%)	4 (1.8%)	0.119	30 (2.3%)	4 (2.2%)	0.927
MI	33 (1.7%)	7 (1.7%)	0.911	16 (2.7%)	6 (2.7%)	0.964	17 (1.3%)	1 (0.6%)	0.423
TLR	67 (3.9%)	38 (9.9%)	<0.001	30 (5.5%)	32 (15.3%)	<0.001	37 (3.2%)	6 (3.3%)	0.597

Values are n (%). Cumulative incidence of events was presented as Kaplan-Meier estimates. MI indicates myocardial infarction; TLF, target lesion failure; and TLR, target lesion revascularization.

*TLF was defined as a composite of cardiac death, MI, and TLR.

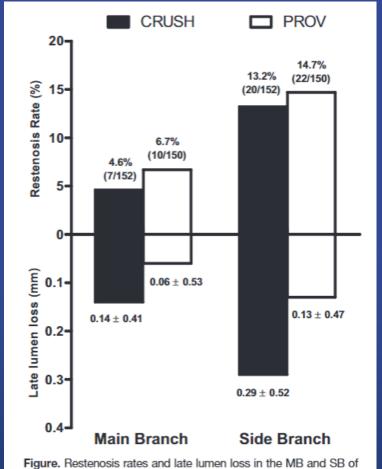
LM vs. Non-LM Bifurcation

Comparison of 5-yr clinical outcomes between 1-stent and 2-stent strategy

- Systemic Review and Network Meta-Analysis (5,711 patients)

TABLE 2 Angiographic Characteristics								
		Bifurcation Treated						
First Author/Trial/Ref. (#)	Interventions	LMCA	LAD	LCX	RCA	True Bifurcation		
Pan et al. (8)	Pro vs. T ste	3 (6); 2 (5)	33 (71); 33 (75)	8 (17); 6 (13)	3 (6); 3 (7)	47 (100); 44 (100)		
CACTUS (9)	Crush vs. Pro	0 (0); 0 (0)	131 (74); 121 (70)	34 (19); 43 (25)	12 (7); 9 (5)	328 (94) OA		
Colombo et al. (10)	T ste vs. Pro	0 (0); 0 (0)	64 (74) OA	15 (17) OA	7 (8) OA	63 (100); 22 (100)		
Lin et al. (3)*	Pro vs. DK	0 (0); 0 (0)	45 (83); 43 (80)	5 (9); 6 (11)	4 (7); 5 (9)	54 (100); 54 (100)		
BBC ONE (4)*	Pro vs. Crush	0 (0); 0 (0)	201 (81); 209 (84)	35 (14); 28 (11)	9 (4); 12 (5)	202 (81); 209 (84)		
EBC TWO (11)	Pro vs. Cul	0 (0); 0 (0)	80 (78); 75 (77)	16 (15); 18 (19)	6 (6); 4 (4)	103 (100); 97 (100)		
DK-Crush V (6)	Pro vs. DK	242 (100); 240 (100)	0 (0); 0 (0)	0 (0); 0 (0)	0 (0); 0 (0)	242 (100); 240 (100)		
Zheng et al. (12)	Crush vs. Cul	13 (9); 19 (13)	96 (64); 102 (68)	35 (23); 26 (17)	6 (4); 3 (2)	150 (100); 150 (100)		
DK-Crush III (13)	DK vs. Cul	210 (100); 209 (100)	0 (0); 0 (0)	0 (0); 0 (0)	0 (0); 0 (0)	210 (100); 209 (100)		
NSTS (14)	Crush vs. Cul	20 (10); 21 (10)	132 (63); 142 (66)	42 (20); 43 (20)	15 (7); 9 (4)	153 (73); 177 (82)		
DK-Crush II (15)	DK vs. Pro	32 (17); 29 (16)	112 (61); 107 (59)	23 (12); 30 (16)	17 (9); 16 (9)	183 (100); 183 (100)		
NBS (16)*	Pro vs. Crush	(2) OA	(73) OA	(18) OA	(7) OA	ND		
BBK I (17)	Pro vs. T ste	0 (0); 0 (0)	76 (75); 74 (73)	16 (16); 21 (21)	9 (9); 6 (6)	69 (69); 69 (69)		
PERFECT (18)	Crush vs. Pro	0 (0); 0 (0)	200 (94); 190 (92)	10 (5); 15 (7)	3 (1); 1 (0)	194 (91); 169 (82)		
NBBSIV (19)*	Pro vs. Cul	(3); (1)	(74); (77)	(17); (18)	(6); (4)	(100); (100)		
BBK II (20)	Cul vs. TAP	28 (19); 23 (15)	82 (55); 83 (55)	36 (24); 38 (25)	4 (3); 6 (4)	147 (98); 143 (95)		
Zhang et al. (21)	Pro vs. Cul	16 (31); 14 (27)	33(63); 34 (65)	3 (6); 2 (4)	0 (0); 2 (4)	52 (100); 52 (100)		
Ruiz et al. (22)	Pro vs. T ste	0 (0); 0 (0)	24 (71); 26 (72)	9 (26); 6 (17)	1 (3); 4 (11)	27 (79); 33 (92)		
DK-Crush I (23)	Crush vs. DK	(16); (15)	(62); (66)	(14); (11)	(8); (8)	(100); (100)		
Ye et al. 2010 (24)	Pro vs. DK	ND	ND	ND	ND	26 (100) 25 (100)		
Ye et al. 2012 (25)	Pro vs. DK	0 (0) 0 (0)	(78) OA	(15) OA	(7) OA	37 (100) 38 (100)		

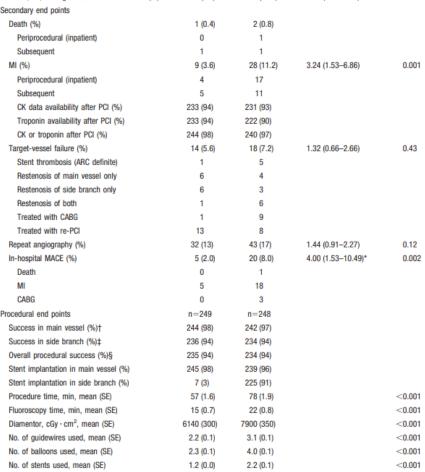
Values are n, n (%), or mean \pm SD. Data are presented for each arm. *When arm-specific data was not available, it is reported as Overall (OA).

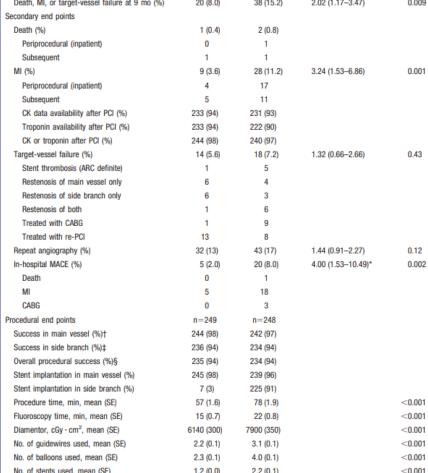

Cul = Culotte; DK = DK-Crush; LAD = left anterior descending artery; LCX = left circumflex artery; LMCA = left main coronary artery; NBBSIV = Nordic-Baltic Bifurcation Study IV; NBS = Nordic Bifurcation Study; ND = not declared; NSTS = Nordic Stent Technique Strategy; Pro = Provisional stenting; RCA = right coronary artery; T ste = T stenting; TAP = T and protrusion.

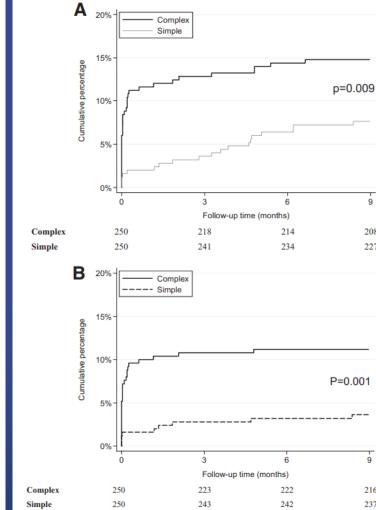
The CACTUS study; Crush vs. Provisional side-branch stenting

Table 3. Clinical Outcomes							
		Provisional-Stenting					
	Crush Group	Group					
	(n=177)	(n=173)	P				
30-day MACE							
(days 0-30)							
Q-wave MI	3 (1.7)	2 (1.1)	1.00				
Non-Q-wave MI	15 (8.5)	12 (6.9)	0.69				
TLR	3 (1.7)	1 (0.5)	0.63				
TVR (including TLR)	3 (1.7)	1 (0.5)	0.63				
Death	0	0					
6-month MACE (days 31–180)							
MI	1 (0.5)	1 (0.5)	1.00				
TLR	10 (5.6)	10 (5.8)	1.00				
TVR (including TLR)	11 (6.2)	12 (6.8)	0.83				
Death	0	1* (0.5)	0.49				
Cumulative MACE (days 0-180)							
MI	19 (10.7)	15 (8.6)	0.59				
TLR	13 (7.3)	11 (6.3)	0.83				
TVR (including TLR)	14 (7.9)	13 (7.5)	1.00				
Death	0	1* (0.5)	0.49				
TLR indicates target-lesion revas	cularization; TVR,	target-vessel revascular	ization.				
Values are mean ±SD or n (%).							

*Noncardiac death (ischemic stroke confirmed by autopsy).




Figure. Restenosis rates and late lumen loss in the MB and SB of the crush stenting (CRUSH) and provisional T-stenting (PROV) groups.


BBC study

; Simple(Provisional) vs. Complex(Crush, Culotte)

Table 3. Trial End Points Simple Complex Hazard Ratio (95% CI) n = 250n = 250Primary end point Death, MI, or target-vessel failure at 9 mo (%) 0.009 20 (8.0) 38 (15.2) 2.02 (1.17-3.47) Secondary end points Death (%) 1(0.4)2 (0.8) Periprocedural (inpatient) Subsequent MI (%) 9 (3.6) 28 (11.2) 3.24 (1.53-6.86) 0.001 Periprocedural (inpatient) 17 Subsequent 5 11 CK data availability after PCI (%) 233 (94) 231 (93) Troponin availability after PCI (%) 233 (94) 222 (90) CK or troponin after PCI (%) 244 (98) 240 (97) Target-vessel failure (%) 14 (5.6) 18 (7.2) 1.32 (0.66-2.66) 0.43 Stent thrombosis (ARC definite) Restenosis of main vessel only Restenosis of side branch only

208

227

216

237

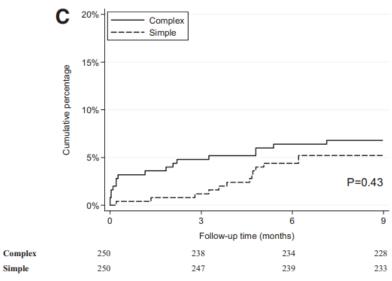
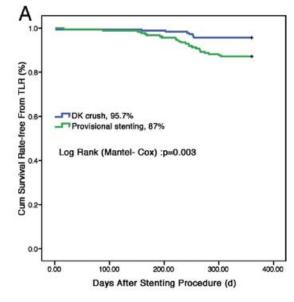


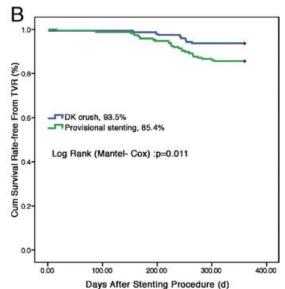
Figure 2. Outcome measures. A, Cumulative risk of primary outcome; B, cumulative risk of myocardial infarction; and C, cumulative risk of target-vessel failure.

§Defined as both of the above

Cl indicates confidence interval; MI, myocardial infarction; CABG, coronary artery bypass graft; and ARC, Academic Research Consortium.

^{*}Risk ratio


[†]Defined as TIMI 3 flow and <30% residual stenosis.


[‡]Defined as TIMI 3 flow.

DKCRUSH-II

; Double kissing crush vs. Provisional stenting

Table 6	Clinical Outco	me		
		DK Group (n = 185)	PS Group (n =185)	p Value
Intra-procedural				
Acute clo	sure	0 (0)	3 (1.6)	0.248
Cardiac d	leath	0 (0)	0 (0)	1.000
Emergen	t CABG	0 (0)	0 (0)	1.000
Needing	IABP	0 (0)	0 (0)	1.000
MI		0 (0)	3 (1.6)	0.248
In-hospital				
Cardiac d	leath	1 (0.5)	0 (0)	0.500
MI		6 (3.2)	4 (2.2)	0.751
CABG		0 (0)	0 (0)	1.000
TLR		1 (0.5)	1 (0.5)	1.000
TVR		1 (0.5)	1 (0.5)	1.000
MACE		6 (3.2)	4 (2.2)	0.751
Stent thre	ombosis definite	4 (2.2)	1 (0.5)	0.372
Procedural	success	179 (96.8)	173 (93.5)	0.217
At 6-month				
Cardiac d	leath	1 (0.5)	2 (1.1)	1.000
MI		6 (3.2)	4 (2.2)	0.751
CABG		0 (0)	1 (0.5)	0.500
TLR		2 (1.1)	6 (3.2)	0.284
TVR		3 (1.6)	8 (4.3)	0.220
MACE		6 (3.2)	11 (5.9)	0.321
Stent thr	ombosis definite	4 (2.2)	1 (0.5)	0.372
At 12-mont	h		_,,	
Cardiac d	leath	2 (1.1)	2 (1.1)	1.000
MI		6 (3.2)	4 (2.2)	0.751
CABG		0 (0)	1 (0.5)	0.500
TLR		8 (4.3)	24 (13.0)	0.005
TVR	12 (6.5		27 (14.6)	0.017
MACE		19 (10.3)	32 (17.3)	0.070
Stent thr	ombosis	5 (2.7)	2 (1.1)	0.449
Definit	е	4 (2.2)	1 (0.5)	0.372
Possib	le	1 (0.5)	1 (0.5)	1.000

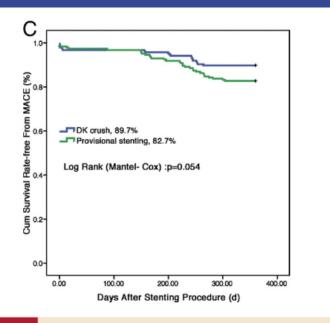
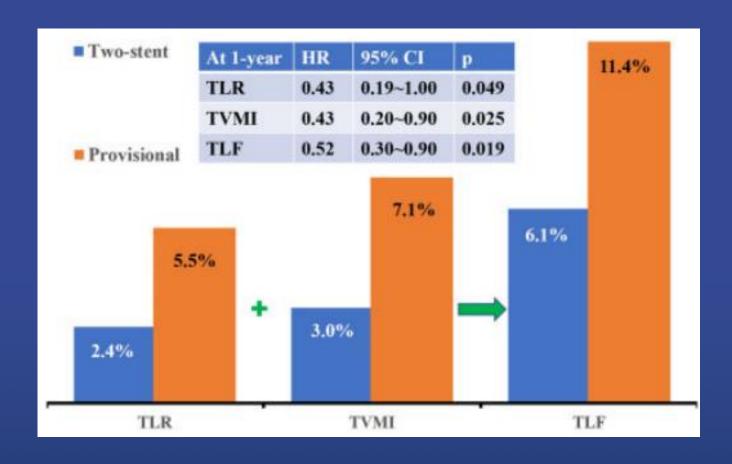
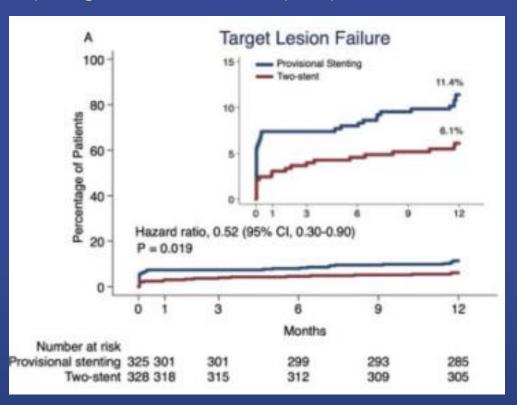
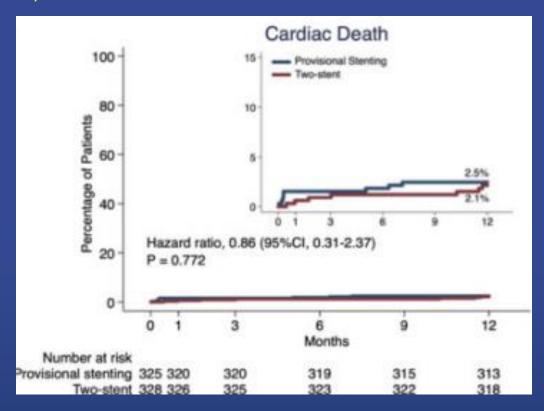



Figure 1

Comparison of Survival Rate Free From TLR, TVR, and MACE Between DK Crush and PS Groups

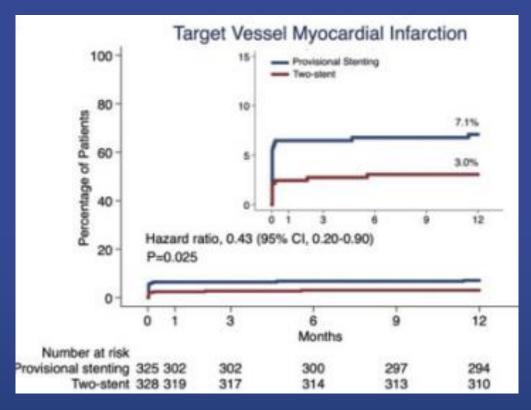

(A) Target lesion revascularization (TLR), (B) target vessel revascularization (TVR), and (C) major adverse cardiac events (MACE). PS = provisional

DEFINITION II trial; Provisional vs 2-stent technique



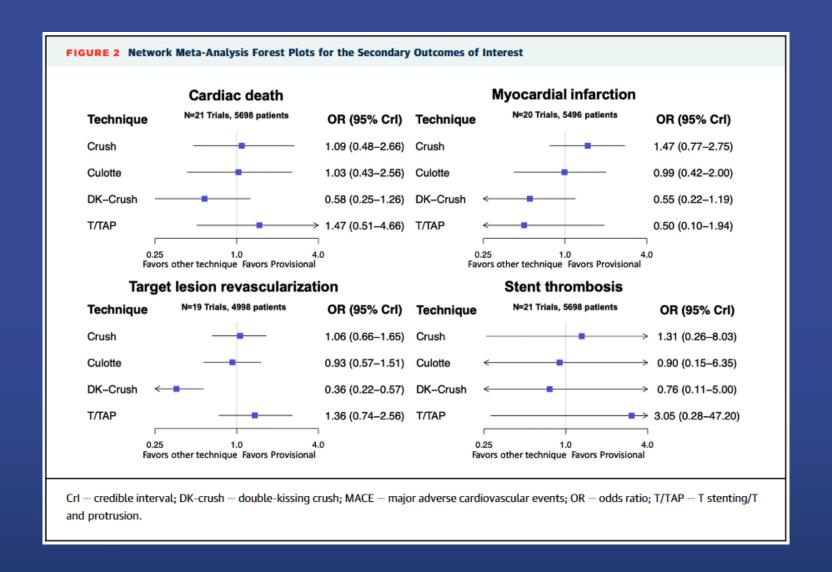
DEFINITION II trial ; Provisional vs 2-stent technique

A) Target Lesion Failure (TLF)

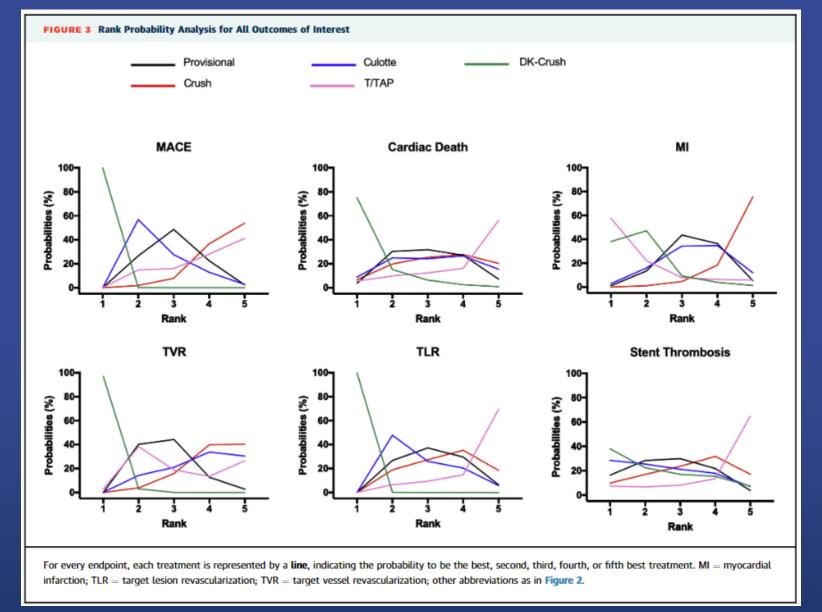


B) Cardiac Death

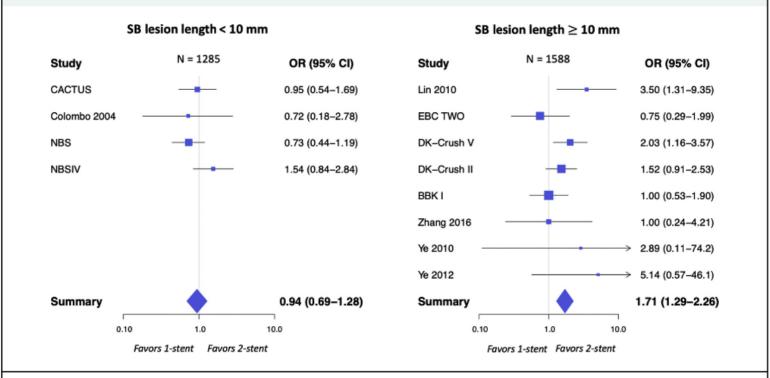
DEFINITION II trial; Provisional vs 2-stent technique


C) Target Vessel MI

D) Target Lesion Revascularization



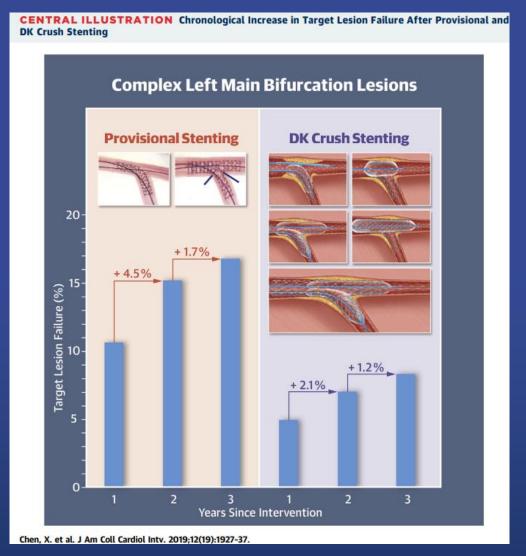
- Systemic Review and Network Meta-Analysis (5,711 patients)



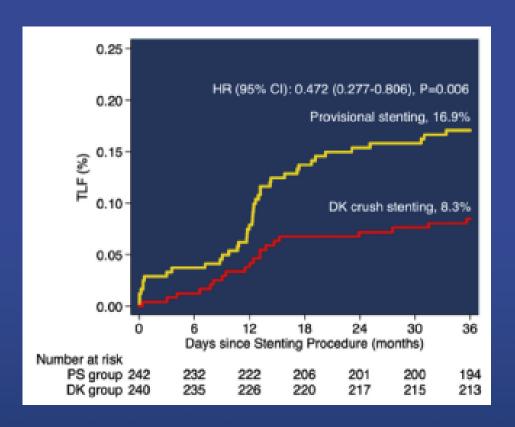
- Systemic Review and Network Meta-Analysis (5,711 patients)

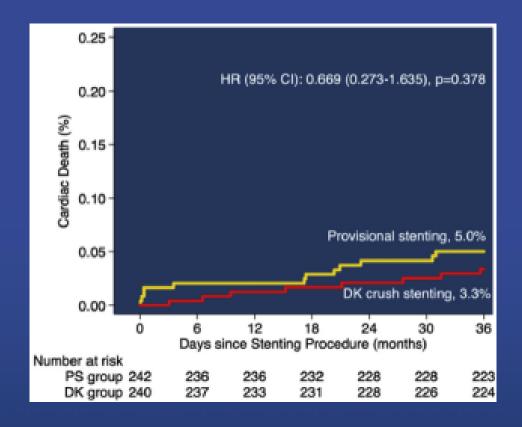
- Systemic Review and Network Meta-Analysis (5,711 patients)

(Left) Forest plot with studies reporting side branch (SB) lesion length <10 mm. The summary estimate shows no difference between 1- and 2-stent bifurcation percutaneous coronary intervention (PCI) strategies. (Right) Forest plot with studies reporting SB lesion length ≥10 mm. The summary estimate favors 2-stent bifurcation PCI techniques. BBK I = Bifurcations Bad Krozingen I; CACTUS = Coronary Bifurcations: Application of the Crushing Technique Using Sirolimus-Eluting Stents; CI = confidence interval; EBC TWO = European Bifurcation Coronary Two; NBS = Nordic Bifurcation Study; NBBSIV = Nordic-Baltic Bifurcation Study IV; other abbreviations as in Figure 2.


LM bifurcation

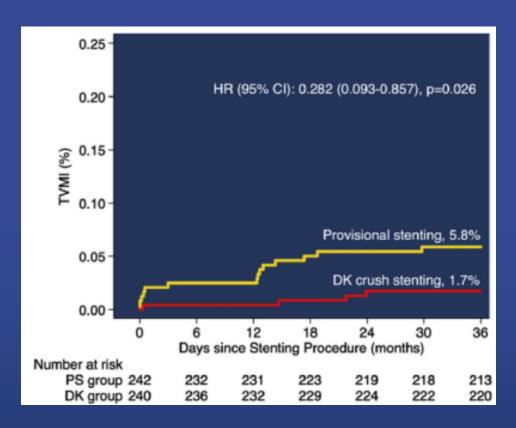
DKCRUSH-V

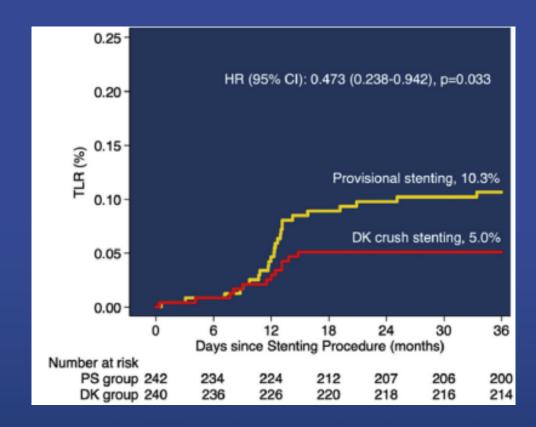

; Double kissing crush vs. Provisional stenting in unprotected LM bifurcation lesions


DKCRUSH-V

; Double kissing crush vs. Provisional stenting in unprotected LM bifurcation lesions

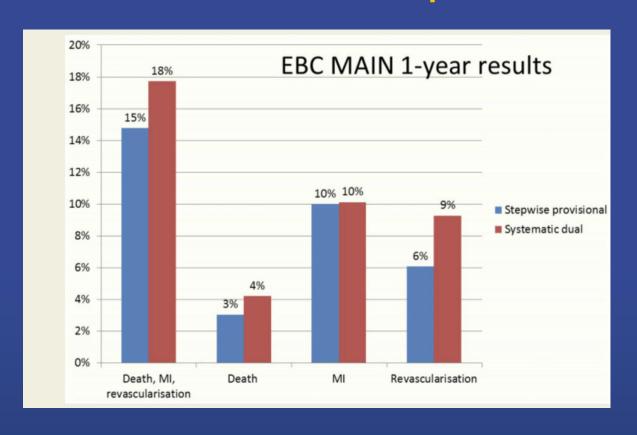
A) Target Lesion Failure (TLF)

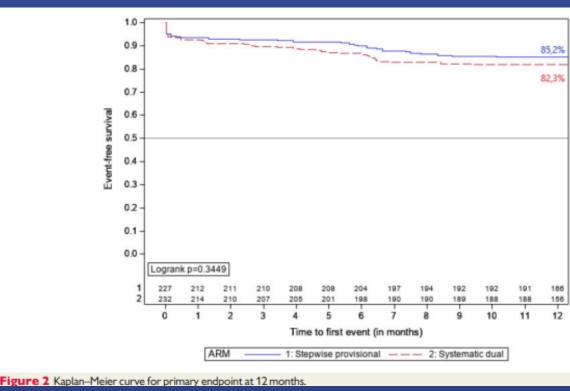

B) Cardiac death

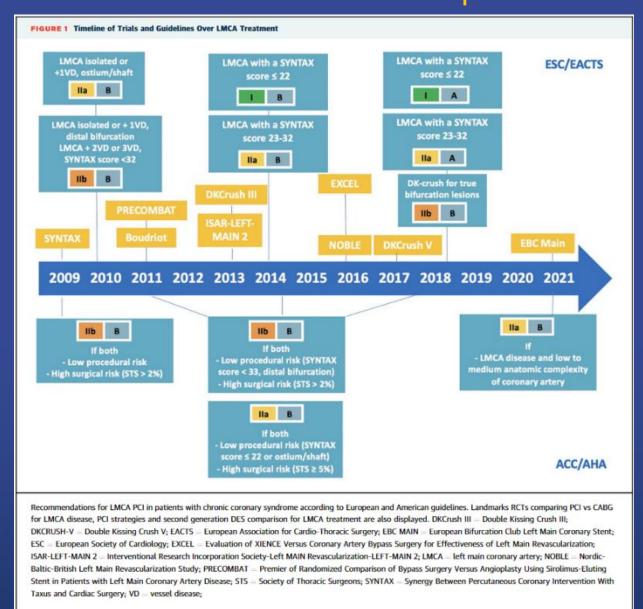

DKCRUSH-V

; Double kissing crush vs. Provisional stenting in unprotected LM bifurcation lesions

C) Target Vessel MI

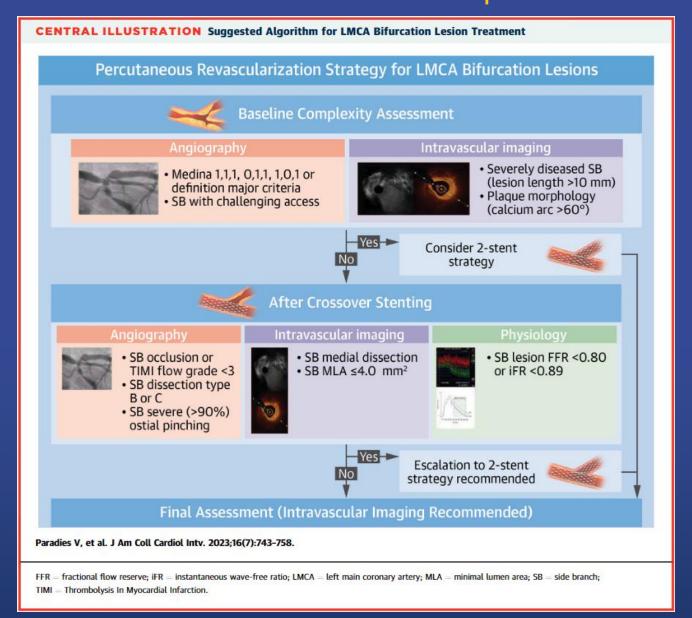



D) Target Lesion Revascularization


EBC MAIN

; Provisional stenting vs. systemic 2-stent in unprotected LM bifurcation lesions

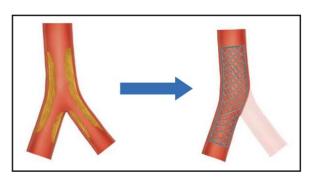
Provisional Strategy for Left Main Stem Bifurcation Disease - A State-of-the-Art Review of Technique and Outcomes

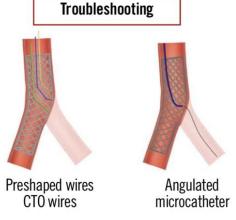


Provisional Strategy for Left Main Stem Bifurcation Disease - A State-of-the-Art Review of Technique and Outcomes

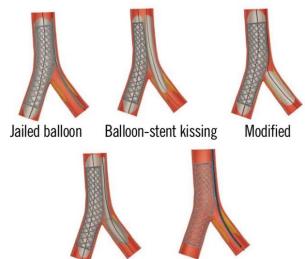
Study or First Author (Year)	Design	n	LM (%)	True Bifurcation Lesions (%)	Stenting Strategy	Suboptimal LCx Result Requiring Any Further Intervention (%)	Modality of Assessment	Definitions of Suboptimal LCx Results
SMART-STRATEGY (2016) ²⁴	RCT	258	44.0	66.0	Provisional + bailout TAP Conservative vs aggressive	47.0 (whole cohort)	Angiography	DS >75% (conservative strategy) DS >50% (aggressive strategy)
DKCRUSH-V (2017) ⁵	RCT	482	100	100	Provisional vs DK crush	47.0 (provisional group)	Angiography	TIMI flow grade <3 or DS >75% or dissection type >B
EXCEL subanalysis (2018) ¹⁸	Subanalysis of RCT	529	100	34.3 (PCI group)	Provisional + bailout 2 stents (65.0) vs elective 2 stents (35.0)	22.0 (provisional group)	Angiography Intravascular ultrasound Fractional flow reserve	Dissection ≥grade B or TIMI <3 or DS >70% angiographic MLA ≤4.0 mm² with PB >60% ≤0.80
DEFINITION II (2020) ⁴	RCT	653	29.0	100	Provisional vs 2 stents	28.0 (provisional group)	Angiography	SB occlusion or type B/C dissection or TIMI flow grade <3
EBC MAIN (2021) ²⁵	RCT	467	100	100	Stepwise provisional vs elective 2 stents	22.0 (provisional group)	Angiography	TIMI flow grade <3 or severe (>90%) ostial pinching or threatened SB closure or dissection type >A
Burzotta et al (2012) ²⁷	Prospective observational study	150	15.0	43.0	Provisional MB stenting + bailout TAP technique	18.0 (whole cohort)	3D quantitative coronary analysis	SB lumen area <50% of SB reference area
FAILS-2 substudy (2017) ²⁸	Retrospective observational study	377	100	100	Provisional vs elective 2 stents	9.7 (provisional)	Angiography	Major dissections or compromised flow
Lee et al (2019) ³⁰	Retrospective study	83	100	0	Provisional MB stenting	16.8	Fractional flow reserve	≤0.80

Provisional Strategy for Left Main Stem Bifurcation Disease - A State-of-the-Art Review of Technique and Outcomes





The 17th expert consensus document of the European Bifurcation Club


CENTRAL ILLUSTRATION Preserving SB access during provisional stenting.

Prevention Conventional - Preshaped wires - Reverse wire technique - Dual lumen microcatheter - Angulated microcatheter - Deflectable microcatheter Jailed wire

Active protection

Jailed Corsair

Semi-inflated

Risk factors:

- Plague on the same side of the SB
- Reduced TIMI flow at the SB
- Severe % DS of bifurcation core ≥70%
- Unfavourable bifurcation angle ≥90°
- High ratio MV/SB ≥2
- Severe % DS at SB ≥90%
- Spiky carina
- RESOLVE score >10

Rescue jailed balloon

CTO: chronic total occlusion; DS: diameter stenosis; MV: main vessel; RESOLVE: Risk prEdiction of Side branch OccLusion in coronary bifurcation intervention; SB: side branch; TIMI: Thrombolysis in Myocardial Infarction

Intravascular imaging in bifurcation PCI

Intravascular imaging in bifurcation PCI

Long-term outcomes of intravascular ultrasound-guided stenting in coronary bifurcation lesions.

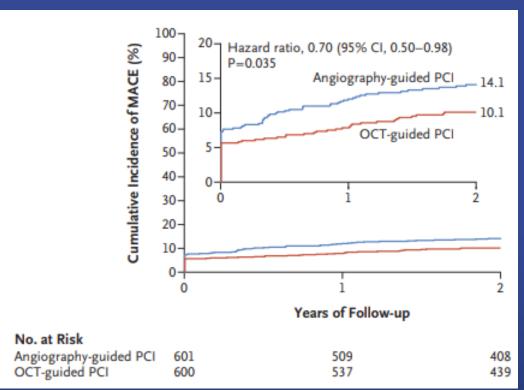
Am J Cardiol. 2010;106:612-8.

- Patients receiving DESs, IVUS-guided stenting for treatment of bifurcation lesions significantly reduced the 4year mortality compared to conventional angiographically guided stenting.
- In addition, IVUS guidance reduced the development of very late stent thrombosis in patients receiving DES

Impact of intravascular ultrasound guidance on long-term clinical outcomes in patients treated with drug-eluting stent for bifurcation lesions: data from a Korean multicenter bifurcation registry

Am Heart J. 2011;161:180-7.

- Periprocedural creatine kinase-MB elevation (>3 times of upper normal limits) was frequently observed in the angiography-guided group.
- The incidence of death or myocardial infarction was significantly lower in the IVUS-guided group compared to the angiography-guided group (3.8% vs 7.8%, log rank test P = .03, hazard ratio 0.44, 95% CI 0.12-0.96, Cox model P = .04).



OCTOBER

; Imaging-guided PCI vs. Angiography-guided PCI in complex bifurcation lesions

Primary endpoint (A composite of death from a cardiac causes, target-lesion MI, ischemia-driven target-lesion revascularization)

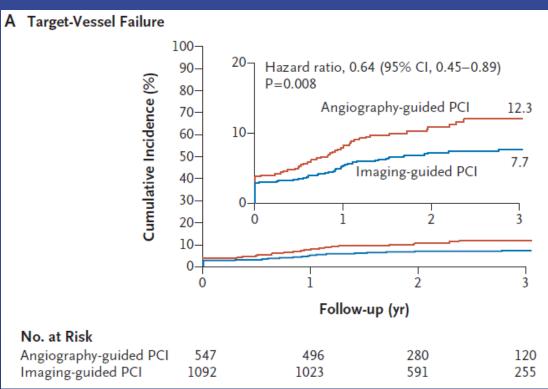
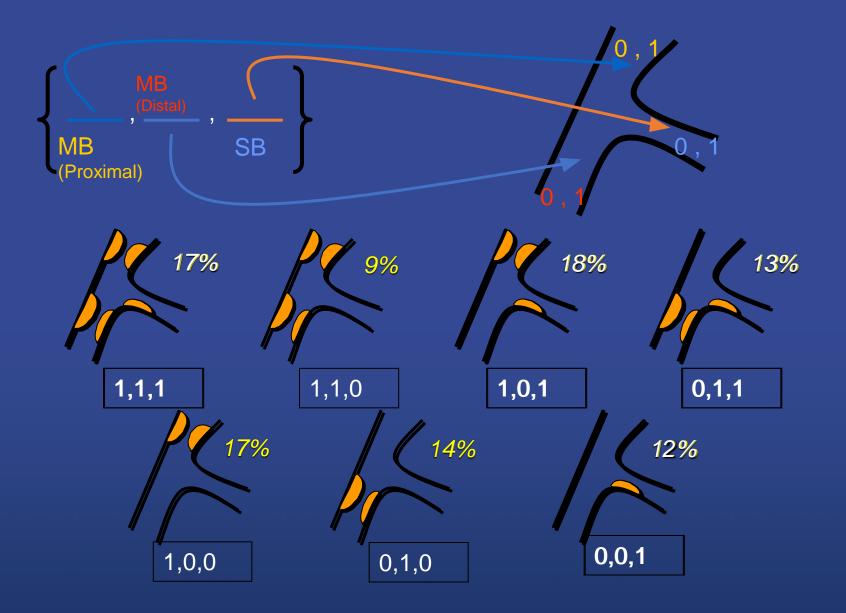


Table 3. Primary and Secondary End Points.*								
End Point	Total (N = 1201)	OCT-Guided PCI (N = 600)	Angiography- Guided PCI (N=601)	Hazard Ratio (95% CI)				
	events	events (estimat	ted percentage)					
Primary end point: MACE†	142	59 (10.1)	83 (14.1)	0.70 (0.50-0.98)				
Clinical secondary end points								
Patient-oriented composite end point‡	182	79 (13.6)	103 (17.7)	0.76 (0.56–1.01)				
Death from any cause	36	13 (2.4)	23 (4.0)	0.56 (0.28–1.10)				
Death from a cardiac cause	23	8 (1.4)	15 (2.6)	0.53 (0.22-1.25)				
Target-lesion myocardial infarction	97	46 (7.8)	51 (8.5)	0.90 (0.60-1.34)				
Ischemia-driven target-lesion revascu- larization∫	42	16 (2.8)	26 (4.6)	0.61 (0.32–1.13)				
Stent thrombosis	29	12 (2.1)	17 (3.0)	0.70 (0.34-1.47)				
Definite	7	3 (0.5)	4 (0.7)	0.75 (0.17-3.34)				
Probable	3	2 (0.3)	1 (0.2)	1.99 (0.18-22.0)				
Possible	19	7 (1.3)	12 (2.1)	0.58 (0.23–1.47)				

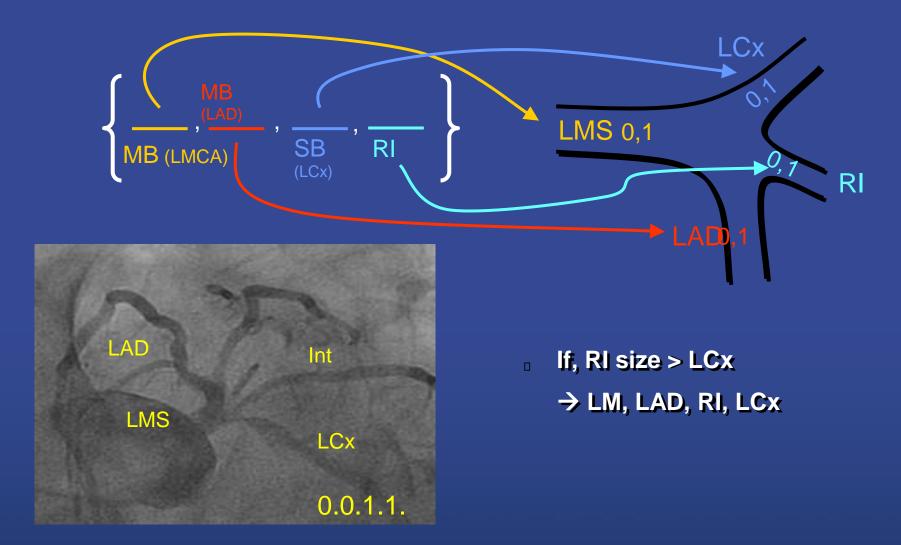
RENOVATE-COMPLEX

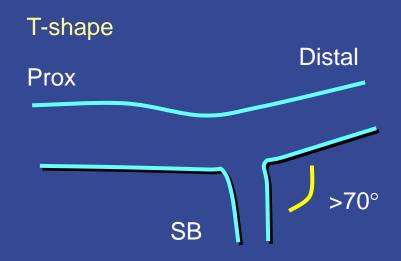
; Imaging-guided PCI vs. Angiography-guided PCI in complex coronary artery

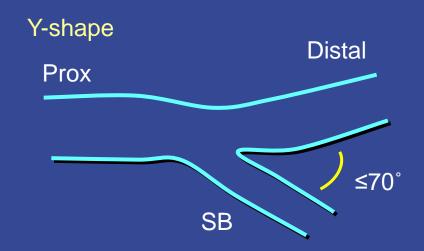
Primary endpoint (A composite of death from a cardiac causes, target-vessel MI, clinically driven target-vessel revascularization)


Table 2. Target-Lesion and Procedural Characteristics.*								
Characteristic	Total (N = 1639)	Intravacular Imaging– Guided PCI Group (N=1092)	Angiography-Guided PCI Group (N = 547)					
Target-lesion characteristics								
Complex coronary lesions — no. (%)†								
True bifurcation lesion	359 (21.9)	233 (21.3)	126 (23.0)					
Chronic total occlusion	319 (19.5)	220 (20.1)	99 (18.1)					
Unprotected left main coronary artery disease	192 (11.7)	138 (12.6)	54 (9.9)					
Diffuse long coronary-artery lesion	898 (54.8)	617 (56.5)	281 (51.4)					
Multivessel PCI involving ≥2 major coronary arteries	622 (37.9)	409 (37.5)	213 (38.9)					
Lesion necessitating use of ≥3 stents	305 (18.6)	208 (19.0)	97 (17.7)					
Lesion with in-stent restenosis	236 (14.4)	158 (14.5)	78 (14.3)					
Severely calcified lesion	231 (14.1)	157 (14.4)	74 (13.5)					
Ostial lesions of major coronary artery	251 (15.3)	182 (16.7)	69 (12.6)					
≥3 Complex coronary lesions — no. (%)	505 (30.8)	352 (32.2)	153 (28.0)					

Bifurcation technique

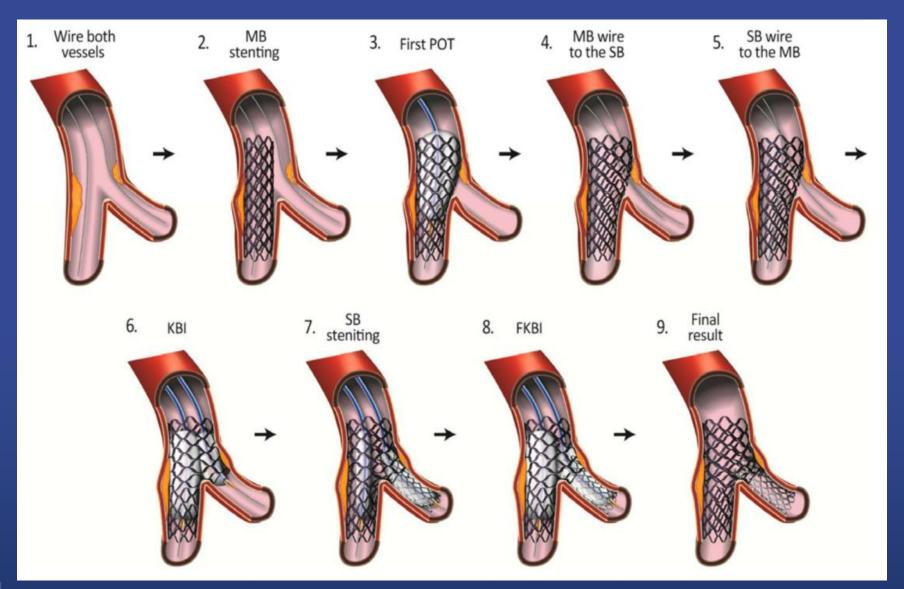

Medina Classification



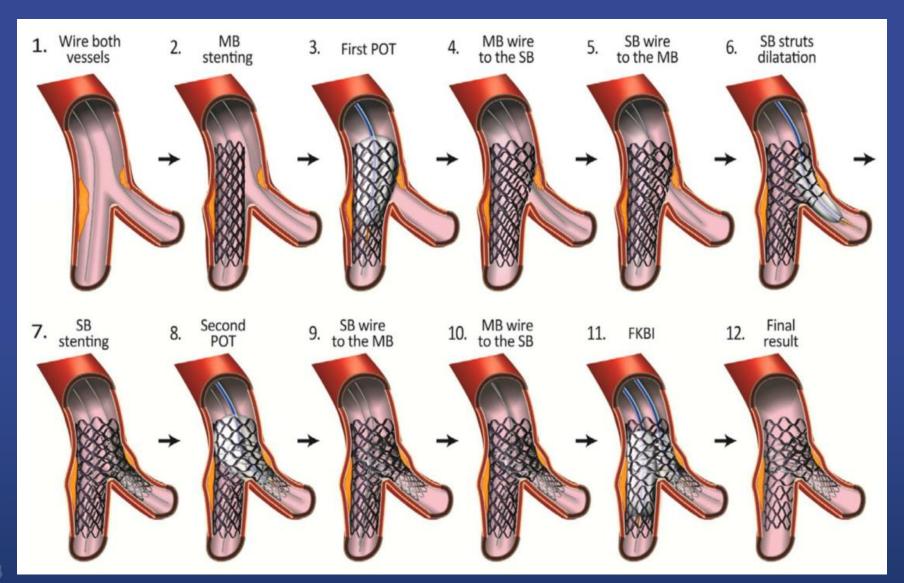


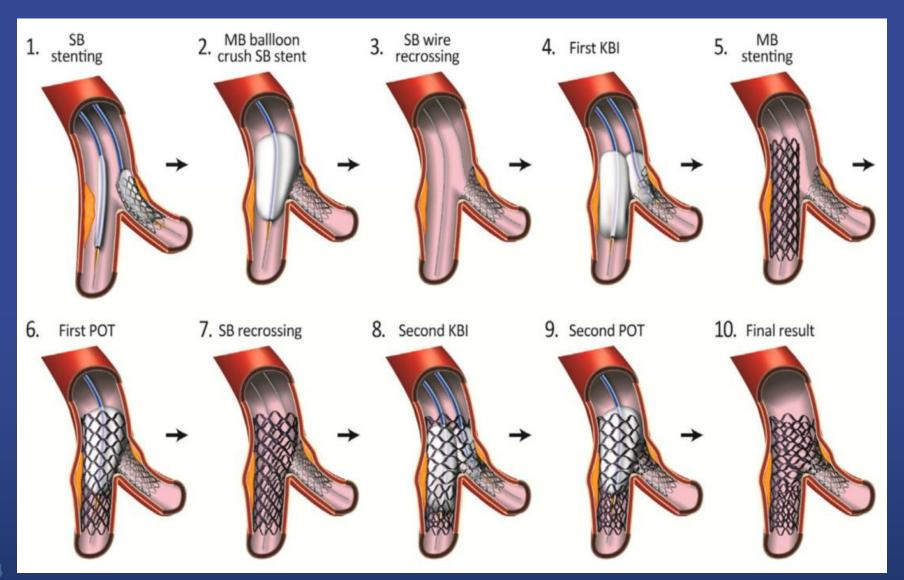
Trifurcation

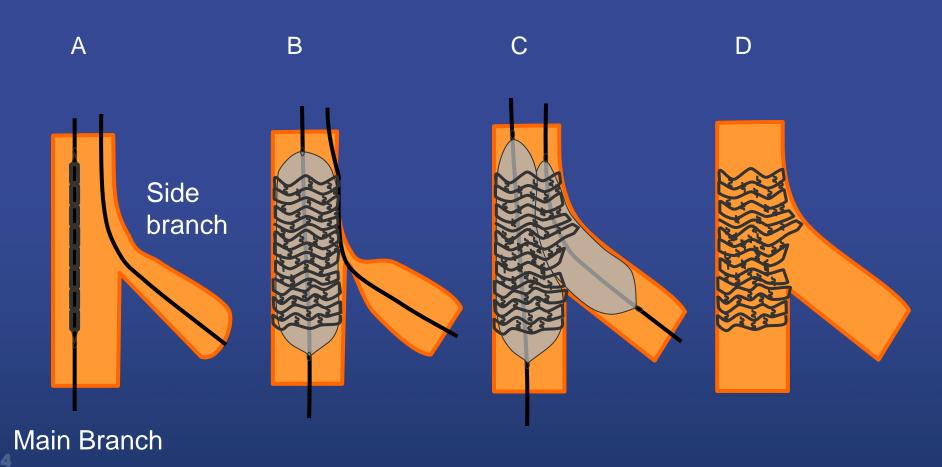
Angulation


- Difficult SB access
- Less plaque shifting
- T-stenting better

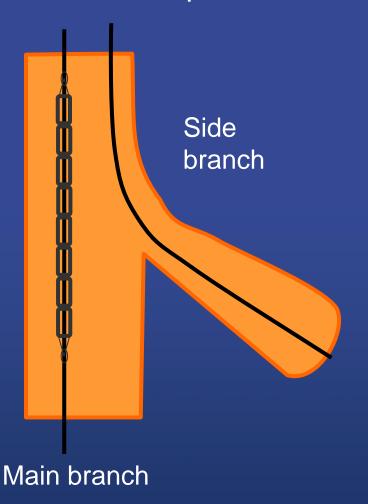
- Easier SB access
- More plaque shifting
- Cullotte or Crush better


Provisional stenting

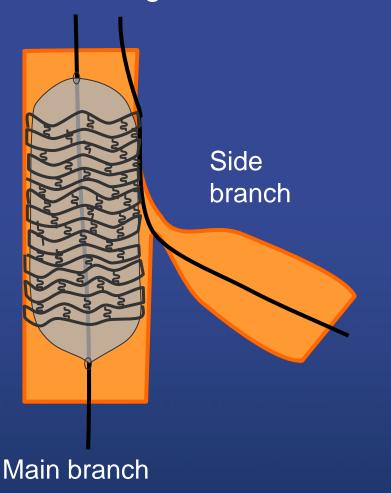

T stenting and T and protrusion (TAP)

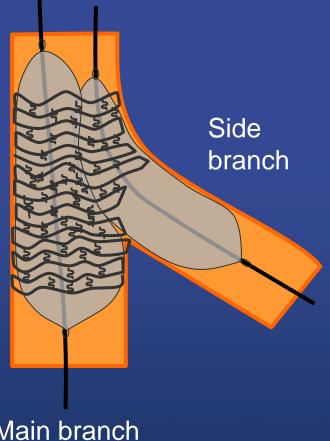

Culotte

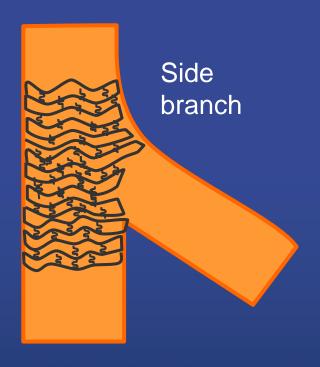
Double kissing Crush



Normal or diminutive side branch ostium

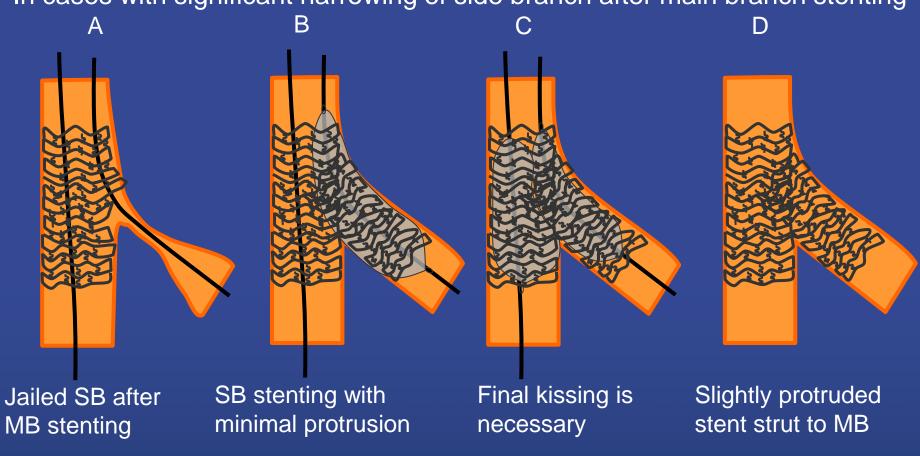



A. Wire both branches and predilate if needed


B. Stent the MB leaving a wire in the SB

C. Rewire the SB passing through the strut of the MB stent, remove the jailed wire, dilate toward SB, and perform FKB inflation

D. Final result



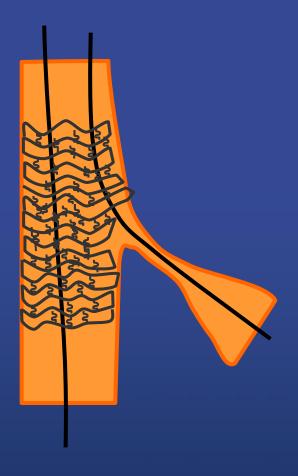
Main vessel

In cases with significant narrowing of side branch after main branch stenting

Advantages

Good SB scaffolding with angles >70°

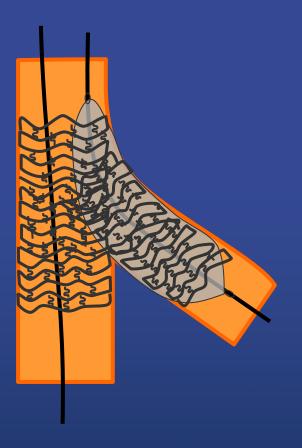
Disadvantages


Potential gap at SB ostium

Protrusion of SB stent into the MB

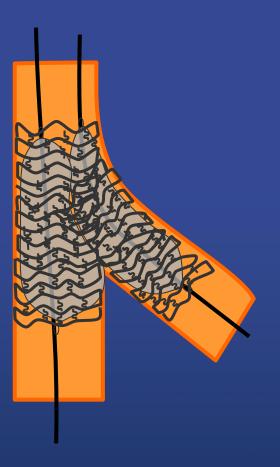
In cases with significant narrowing of side branch after main branch stenting

A. Jailed SB after MB stenting



In cases with significant narrowing of side branch after main branch stenting

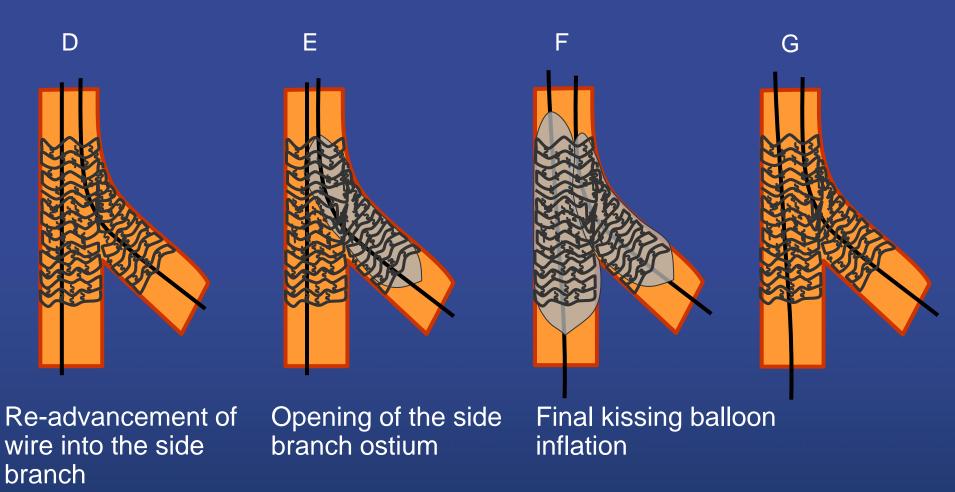
B. SB stenting with minimal protrusion



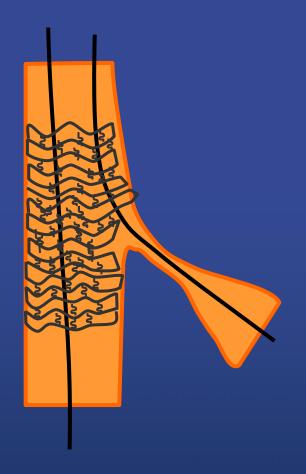
In cases with significant narrowing of side branch after main branch stenting

C. Final kissing is necessary

In cases with significant narrowing of side branch after main branch stenting

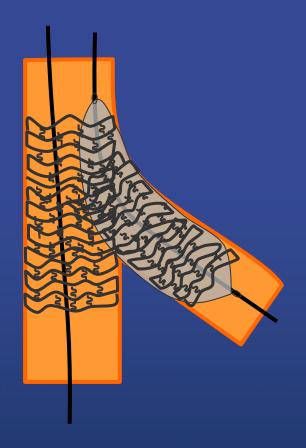

D. Slightly protruded stent strut to MB

Final kissing balloon dilatation is mandatory

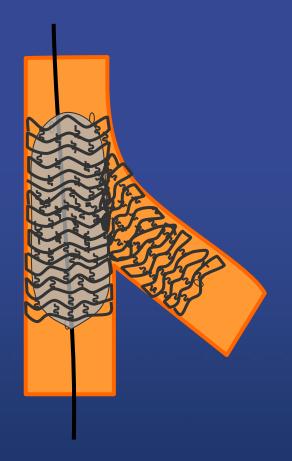


Final kissing balloon dilatation is mandatory

A. Jailed SB after MB stenting

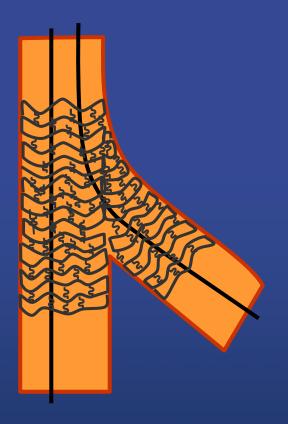


Final kissing balloon dilatation is mandatory


B. SB stenting with minimal protrusion

Final kissing balloon dilatation is mandatory

C. Remove SB balloon & wire, and inflate MB at high pressure to crush SB stent

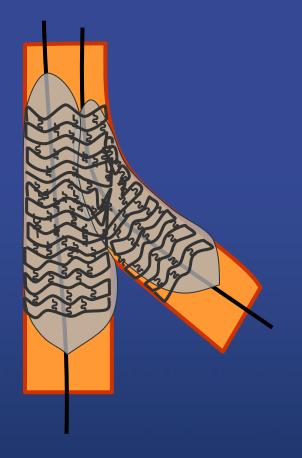


Final kissing balloon dilatation is mandatory

D. Re-advancement of wire into the side branch

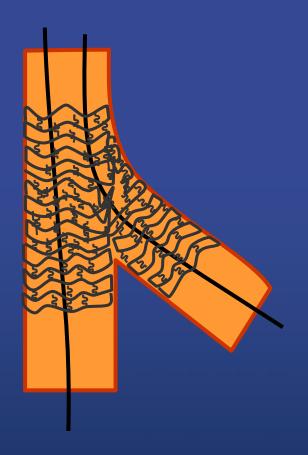
Final kissing balloon dilatation is mandatory

E. Opening of the side branch ostium



Final kissing balloon dilatation is mandatory

F. Final kissing balloon inflation



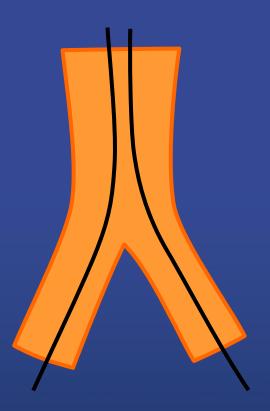
Final kissing balloon dilatation is mandatory

G. Final result

A D

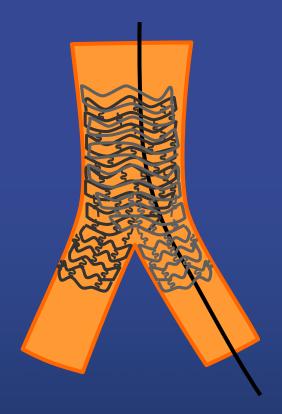
Advantages

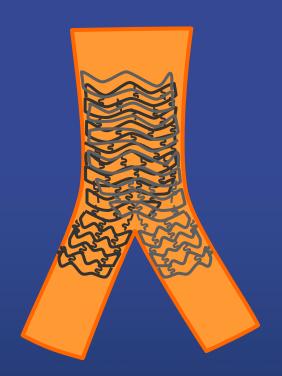
Compatible with 6-Fr guider Independent of bifurcation angle Predictable scaffolding

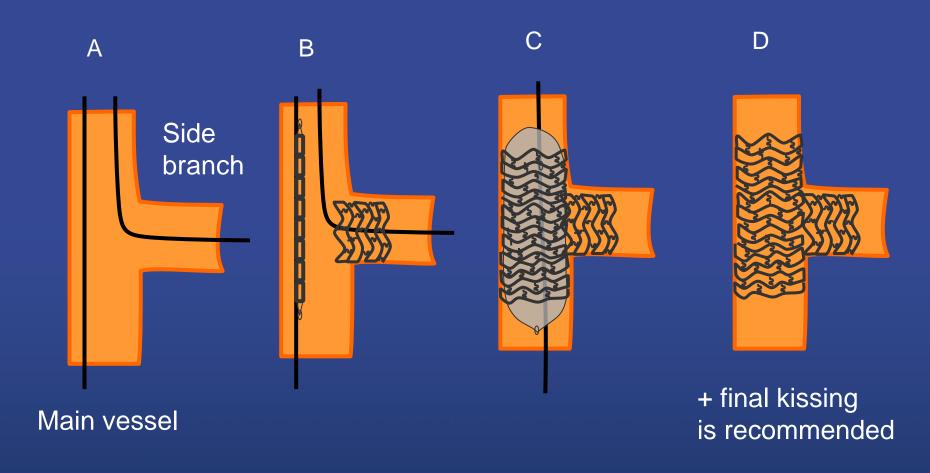

Disadvantages

Leaves multiple layers of strut Potential acute closure of MB

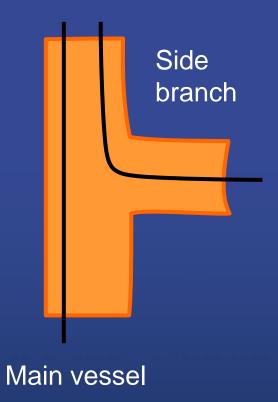
A. Wire both branches and predilate if needed

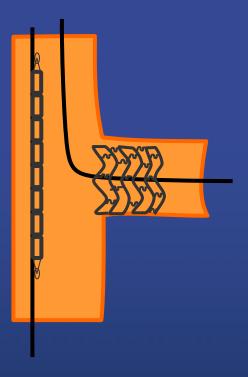

B. Deploy a stent in the more angulated branch (SB)

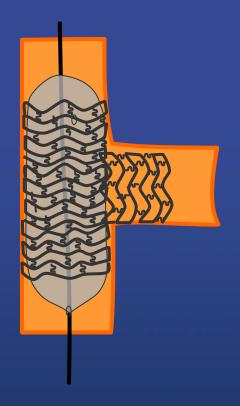

C. Rewire unstented branch, dilate the stent to unjail the MB, and expand a second stent into the unstented MB

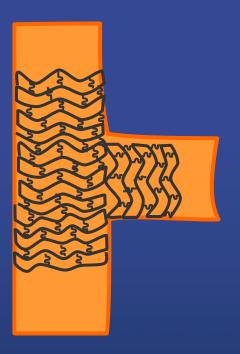


D. Final result after final kissing balloon

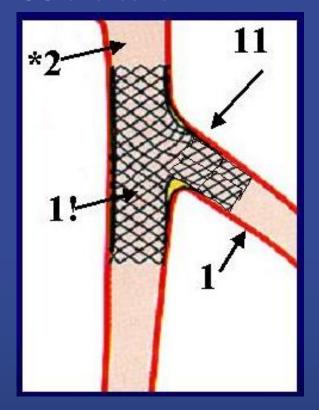


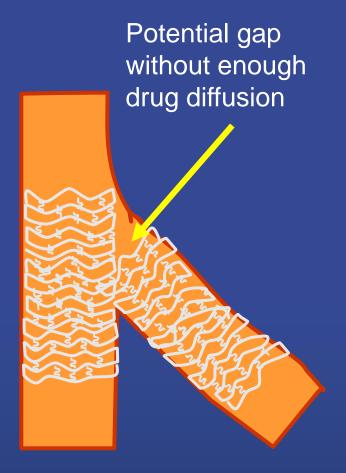

A. Wire both branches and predilate if needed


B. SB stent deployed at nominal pressure


C. Remove balloon and wire from SB, And deploy the MB stent at high pressure

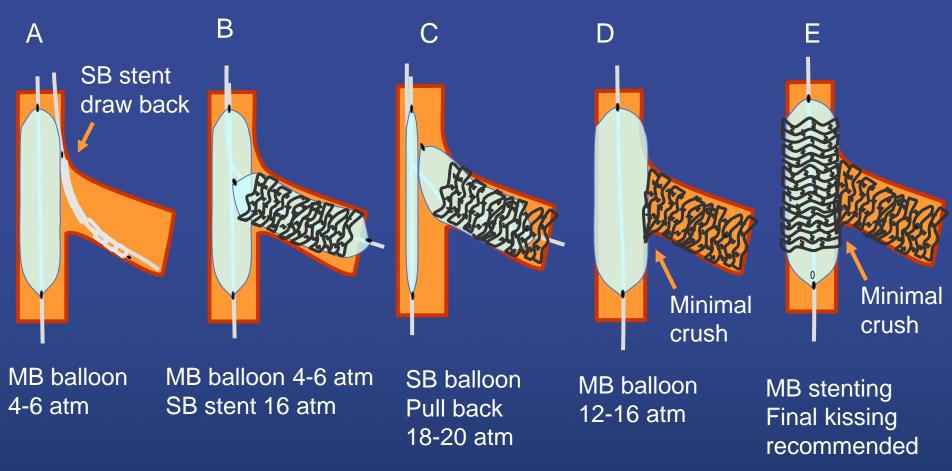
D. Rewire the SB and high-pressure dilatation, then final kissing inflation is recommended



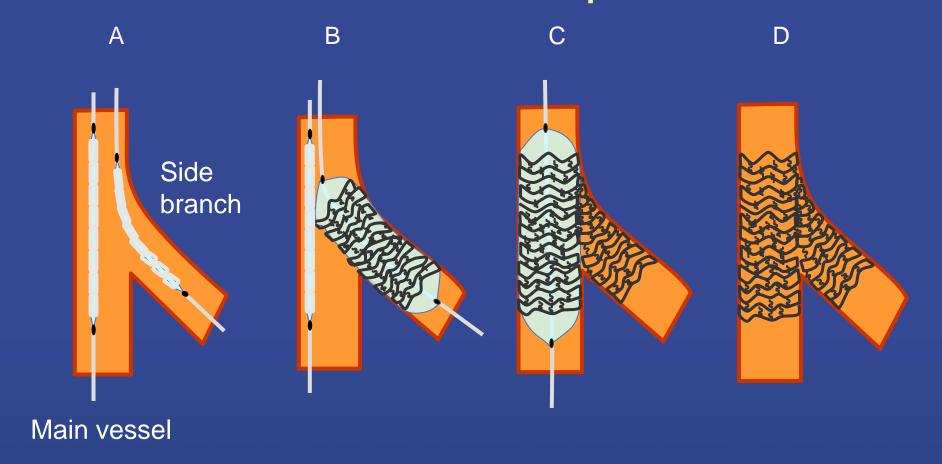


Limitation of Modified T Stenting

Restenosis site of T stenting in SIRIUS bifurcation

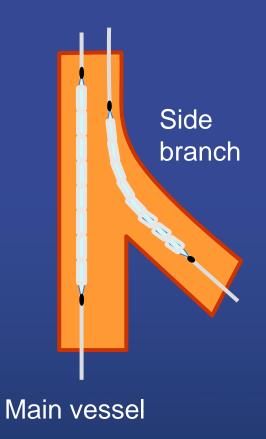


To prevent potential gap at the ostial side branch, the first stent should cover the entire surface of the side branch.



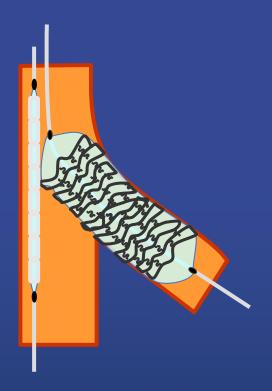
For Proper Ostial positioning

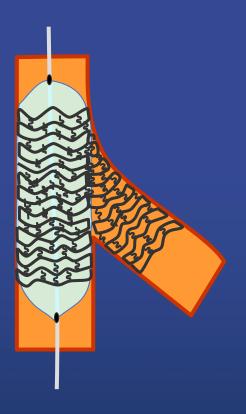
Advantages

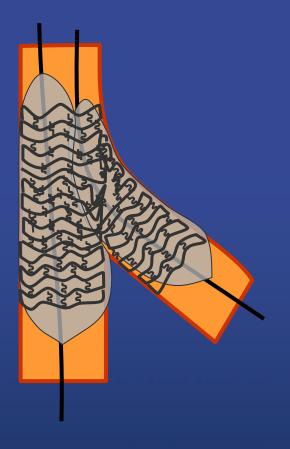

Relatively simple Low risk of SB occlusion Good coverage of SB ostium

Disadvantages

Difficult FKI
Requires 7 or 8-Fr guider
Leaves multiple layers of strut


A. Advance 2 stents

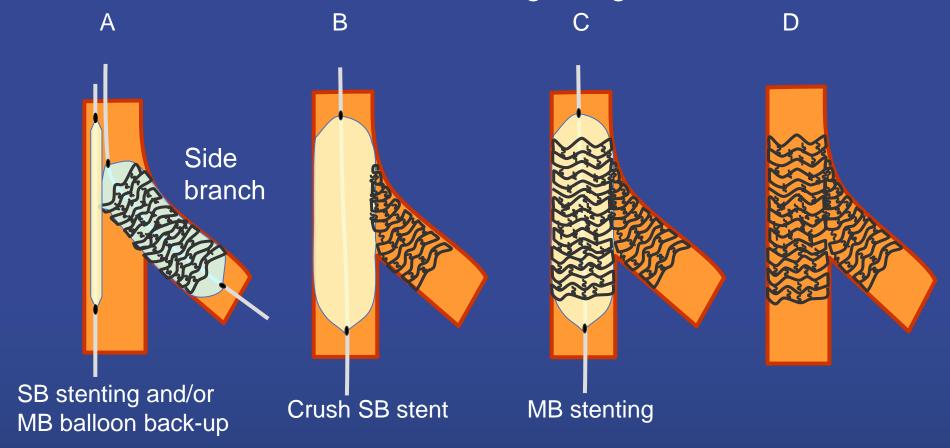

B. Deploy the SB stent


C. Deploy the main stent, then rewire SB and perform high-pressure dilatation

D. Perform final kissing inflation



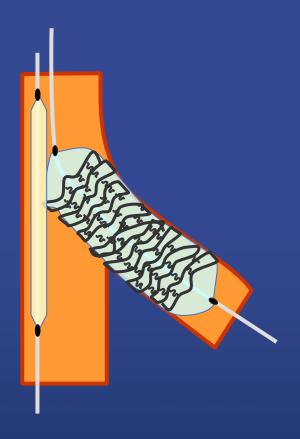
Crush Technique


D. Final result

Performed with 6~7Fr guiding catheter

Advantages

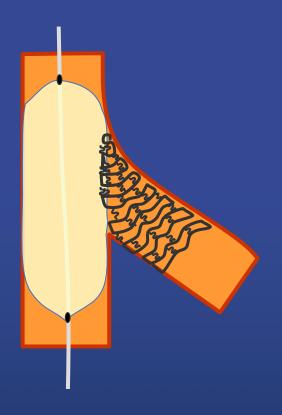
Minimizes multi-layers of struts Good scaffolding at SB ostium Facilitates FKI Compatible with 6-Fr guider


Disadvantages

Still leaves multiple layers of strut

Performed with 6~7Fr guiding catheter

A. Deploy the SB stent \pm MB balloon backup

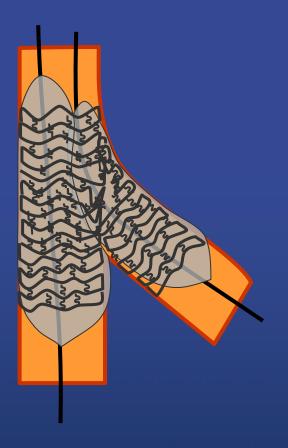


Performed with 6~7Fr guiding catheter

B. Crush SB stent

Performed with 6~7Fr guiding catheter

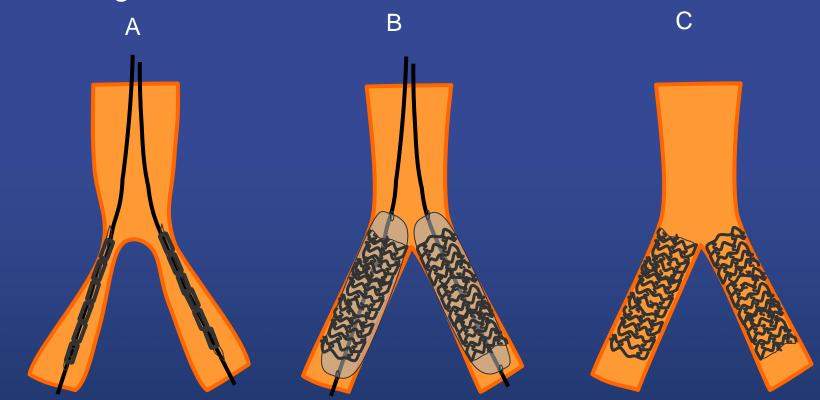
C. Deploy stent in MB, then rewire SB and perform high-pressure dilatation



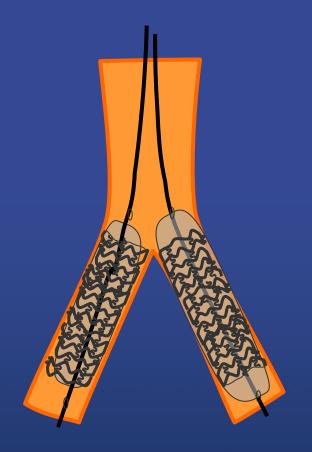
Performed with 6~7Fr guiding catheter

E. Perform final kissing inflation

Performed with 6~7Fr guiding catheter


F. Final result

- Bifurcation without stenosis proximal to the bifurcation
- Short LM
- Less angle


A. Position 2 parallel stents covering both branches with a slight protrusion into the proximal MB

B. Deploy 2 stents individually (or simultaneously)

C. Perform high-pressure sequential single stent postdilation, Then medium pressure final kissing inflation

- Large proximal reference
- Bifurcation with stenosis proximal to the bifurcation

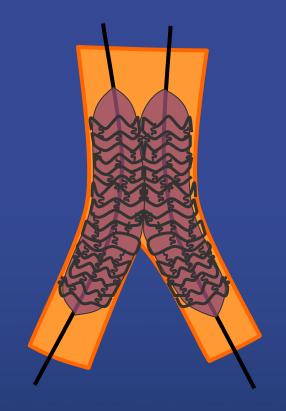
A B C

Advantages

No risk of occlusion for both branches
No need to re-cross any stent
Technically easy and quick

Disadvantages

Requires 7- or 8-Fr guider
Leaves long metallic carina
Over-dilatation in proximal MB
Diaphragmatic membrane formation
Difficulty in repeat revascularization


A. Position 2 parallel stents covering both branches with a long double barrel protrusion into the proximal MB

B. Deploy 2 stents

C. Perform final kissing inflation resulting a new metallic carina

