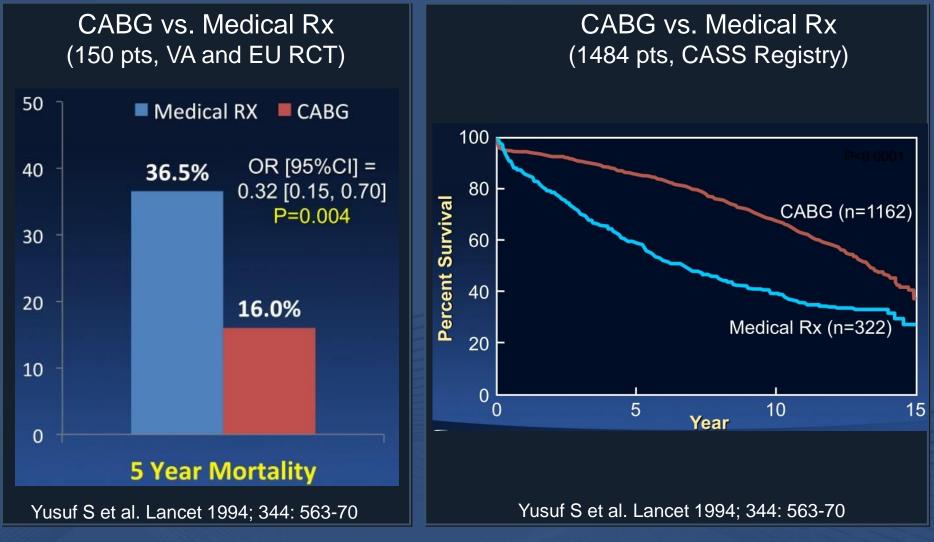
Left Main Disease

Comparisons of PCI against CABG 10 years of advances

	Design	N (PCI/ CABG)	Endpoint	FU, yrs	Key findings
MAIN COMPARE (2008, 2010, 2018)	Multicenter registry	1102/1138	Death; death, Q-wave MI, or stroke; TVR	10	Similar rates of mortality and death, Q-wave MI, or stroke; higher rates of TVR with PCI
LE MANS (2008, 2016)	Multicenter RCT	52/53	Change in LVEF	10	Improvement in ejection fraction only with PCI, comparable rates of death, MI, stroke, or TVR
SYNTAX (2010, 2014)	Multicenter RCT	357/348	Death, MI, stroke, or RR	5	Comparable rates of death, MI, stroke, or repeat revascularization
Boudriot et al. (2011)	Multicenter RCT	100/101	Death, MI, or RR	1	PCI with sirolimus-eluting stent inferior to CABG
PRECOMBAT (2011, 2015, 2020)	Multicenter RCT	300/300	Death, MI, stroke, or ischemia-driven TVR	10	PCI non-inferior to CABG at 1, 5, and 10 year, comparable rates of death, MI, stroke, or ischemia- driven TVR
DELTA (2012)	Multicenter registry	1874/901	Death, MI, or stroke	3.5	Comparable rates of death, MI, or stroke. Higher TVR in PCI
NOBLE (2016)	Multicenter RCT	592/592	Death, MI, stroke, or any repeat revascularization	5	CABG superior to PCI (primary end points 28% in PCI group vs in 18% in CABG group)
EXCEL (2016, 2018)	Multicenter RCT	948/957	Death, MI, or stroke	4	Similar rates of primary endpoint of death, stroke, or MI at 4 years

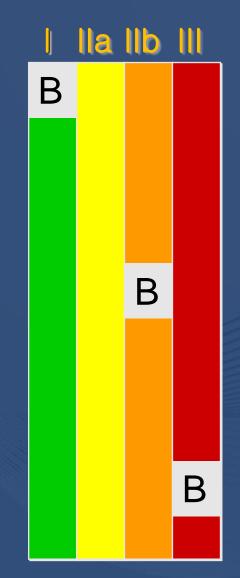

TABLE 1 Summary of Randomized Clinical Trials of PCI With DES Vs CABG for LMCA Disease

	LEMANS ^{30,31}	Boudriot et al ³²	SYNTAX-LM ³³⁻³⁵	PRECOMBAT ^{36,38}	EXCEL ^{39,40}	NOBLE ^{41,42}
Recruitment period	2001-2004	2003-2009	2005-2007	2004-2009	2010-2014	2008-2015
PCI/CABG, n/n	52/53	100/101	357/348	300/300	948/957	592/592
Follow-up, y	10	1	5 10 (for mortality)	10	5	5
Diabetes, %	18	36	25	32	29	15
Bifurcation, %	58	72	61	64	81	81
SYNTAX score, mean	Not reported	23	30	25	21	22
Stent	BMS and DES (35%)	DP-SES	DP-PES	DP-SES	DP-EES	BP-BES and DP-SES (7.7%)
IVUS	Recommend	Infrequent	Infrequent	At discretion, 91%	Recommended, 77%	Recommended, 74%
FFR guidance	Not reported	Not reported	Infrequent	Not reported	Recommended, 9.0%	Recommended
LIMA, %	72	99	97	94	99	96
Off pump, %	1.9	46	Not reported	64	29	16
Primary trial endpoint	Change in LVEF	Cardiac death, MI, or TVR	Death, MI, stroke, or repeat revascularization 10-y all-cause death	Death, MI, stroke, or TVR	Death, MI, or stroke	Death, nonprocedural MI, stroke, or repeat revascularization
Key finding	There was a trend toward higher LVEF at 10 y with PCI.	PCI was inferior to CABG at 1 y.	PCI was noninferior to CABG at 1 and 5 y in terms of death, MI, stroke, or repeat revascularization. No significant difference in 10-y all- cause death between PCI and CABG.	PCI was noninferior to CABG at 1, 5, and 10 y.		PCI was inferior to CABG at 5 y.

Data for Left Main *30 years ago*

COMPLEX PCI 2023 MAKE IT SIMPLEI: TECHNICAL FORUM A TO Z

PTCA was not considered as an Tx option



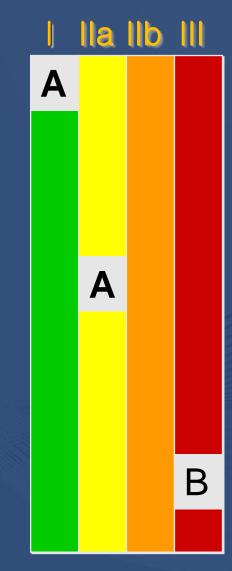
Guideline Changes for LMCA, 10 Years

	Class of recommendation	LOE
2005 ACC/AHA/SCAI	III—PCI is not recommended in patients with unprotected LMCA disease and eligibility for C ABG	С
2005 ESC/EACTS	IIb —Stenting for unprotected LMCA disease should only be considered in the absence of ot her revascularization options	С
:		
2011/2014 ACC/AHA/AATS/PCNA /SCAI/STS	 IIa—For SIHD patients when both of the following are present: Anatomically low risk of PCI procedural complications & high likelihood of good long-term outcomes (e.g., a low SYNTAX score [≤22], ostial or trunk left main stenosis) Clinical characteristics that predict a significantly increased risk of adverse surgical outcome s (e.g., STS-predicted risk of operative mortality ≥5%) 	В
	 IIb—For SIHD patients when both of the following are present: Anatomically low-to-intermediate risk of PCI procedural complications & intermediate-to-high likelihood of good long-term outcome (e.g., low-intermediate SYNTAX score of <33, bifurcation left main stenosis) Clinically increased risk of adverse surgical outcomes 	
	III: HARM—SIHD patients with unfavorable anatomy for PCI & good candidates for CABG	В
2014 ESC/EACTS	I—Left main disease with a SYNTAX score ≤ 22. IIb—Left main disease with a SYNTAX score 23–32 III—Left main disease with a SYNTAX score ≥ 33	В
2018 ESC/EACTS	I—Left main disease with a SYNTAX score ≤ 22. IIa—Left main disease with a SYNTAX score 23–32	Α
	III—Left main disease with a SYNTAX score ≥ 33	В
	I—In patients with SIHD and significant left main stenosis, CABG is recommended to improve survival.	D
2021 ACC/AHA	IIa —In selected patients with SIHD and significant left main stenosis for whom PCI can provide equivalent revascularization to that possible with CABG, PCI is reasonable to improve survival	

Elective PCI for LM Stenosis ESC/EACTS Guidelines 2014

LM with

- SYNTAX score \leq 22

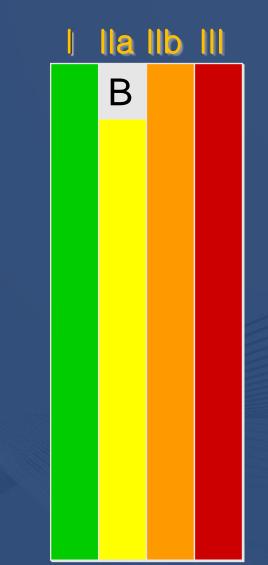

LM with
 SYNTAX score 23-32

LM with

 SYNTAX score > 32

Elective PCI for LM Stenosis ESC/EACTS Guidelines 2018

LM with


- SYNTAX score \leq 22

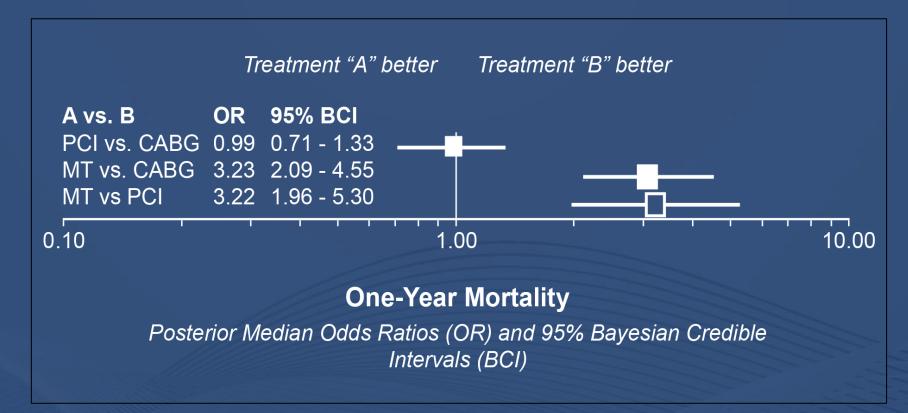
LM with - SYNTAX score 23-32

LM with - SYNTAX score > 32

Elective PCI for LM Stenosis ACC/AHA Guidelines 2021

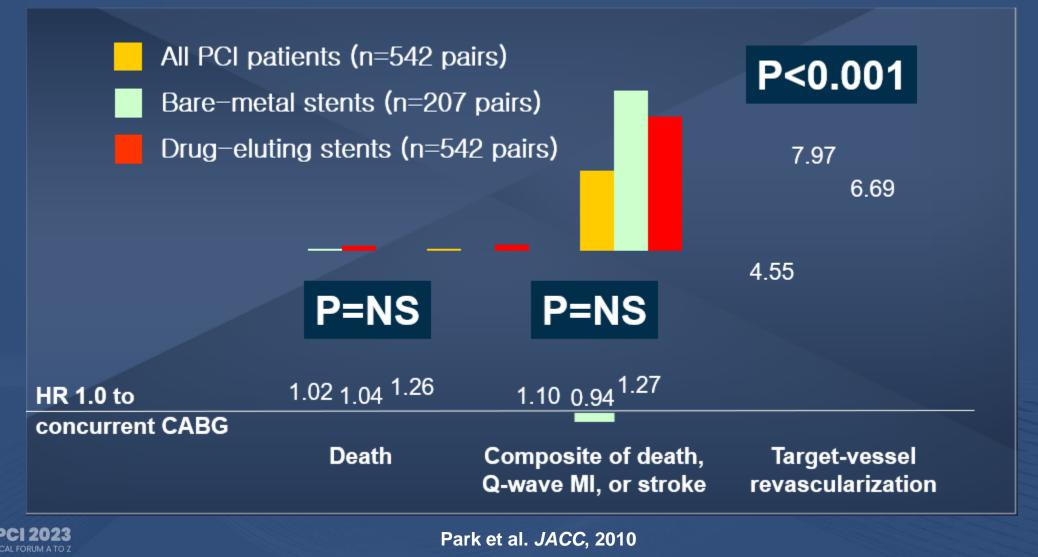
PCI and provide equivalent revascularization to that possible with CABG

- PCI is reasonable to improve survival

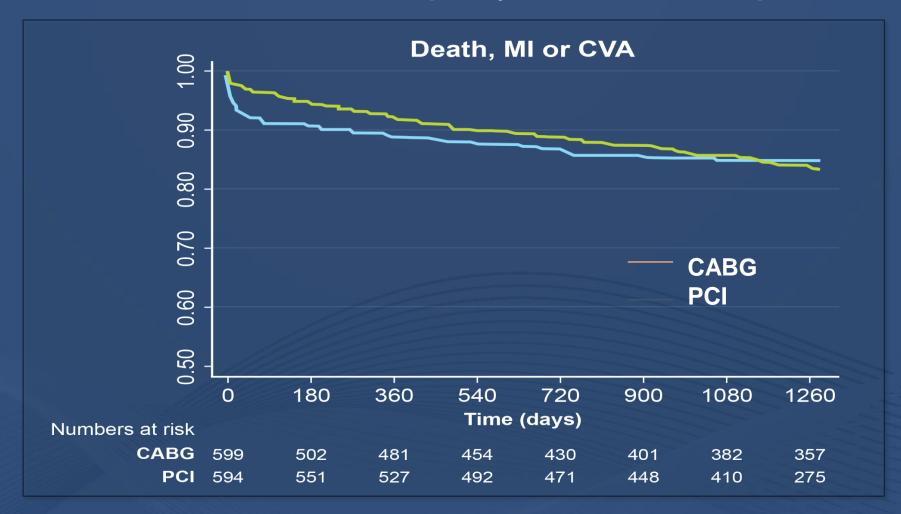

LM : PCI vs. CABG

PCI vs. Medical Treatment

Bayesian network meta-analysis involving 12 (PCI vs. CABG), and 7 (CABG vs. Medication) studies

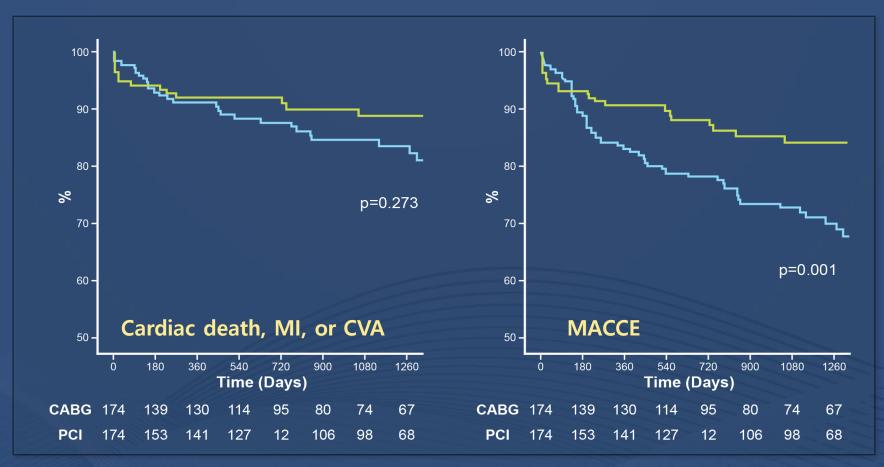

PCI is superior to medical treatment in the treatment of LM stenosis.

Bittl et al. Circulation, 2013


Hazard Ratios for Matched Cohort Outcomes : Median 5-Year Outcomes

The DELTA Registry LM revascularization: PCI vs. CABG

Death, MI or CVA in Propensity Score-Matched Groups

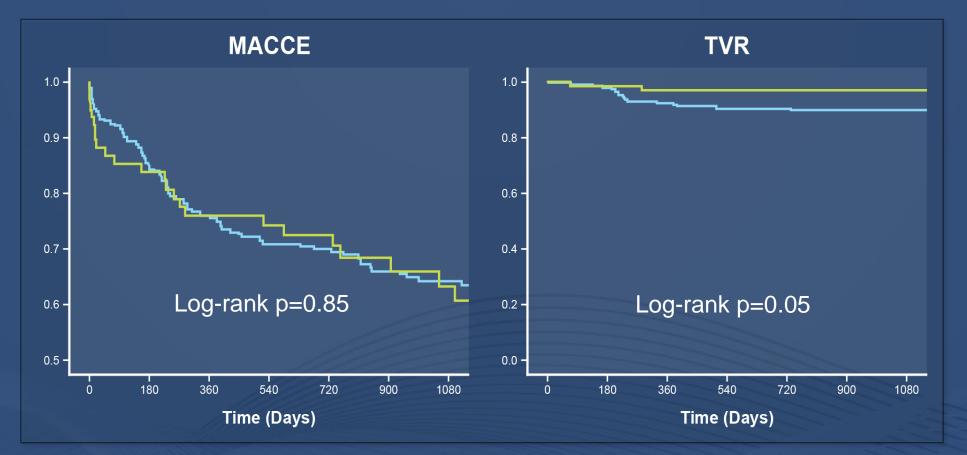

8TH COMPLEX PCI 2023 MAKE IT SIMPLEI: TECHNICAL FORUM A TO Z

Chieffo et al. JACC: Cardiovasc interv 2014

PCI vs. CABG in Females

Female subgroup of <u>DELTA</u> registry (PCI, 489; CABG, 328 patients) <u>The results of propensity score-matched groups</u>

There was no difference in the hard endpoints.

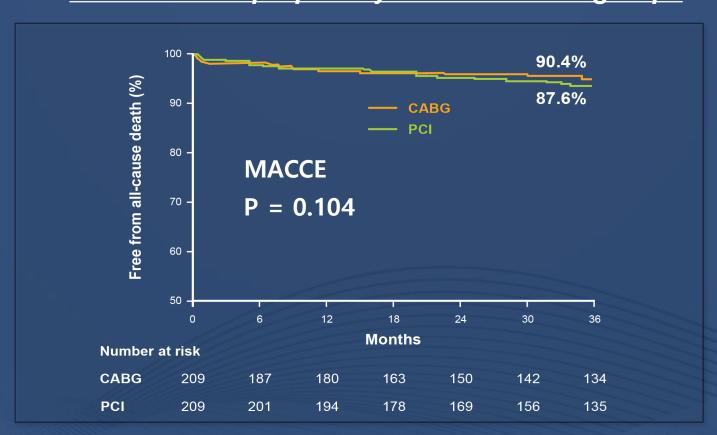

8TH COMPLEX PCI 2023 MAKE IT SIMPLEI: TECHNICAL FORUM A TO Z

Buchanan et al. Am J Cardiol, 2014

PCI vs. CABG in Octogenarians

Octogenarian subgroup of *DELTA* registry (PCI, 218; CABG, 86)

In octogenarians, no difference was observed in the occurrence of the hard endpoint after PCI or CABG.

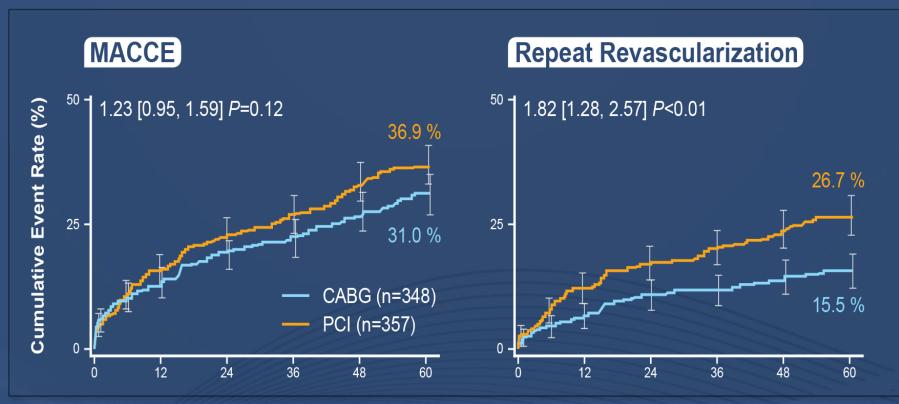


Conrotto et al. Am J Cardiol, 2014

PCI vs. CABG for Ostial/Midshaft LM stenosis

A subgroup of <u>DELTA</u> registry (PCI, 482; CABG, 374 patients) <u>The results of propensity score-matched groups</u>

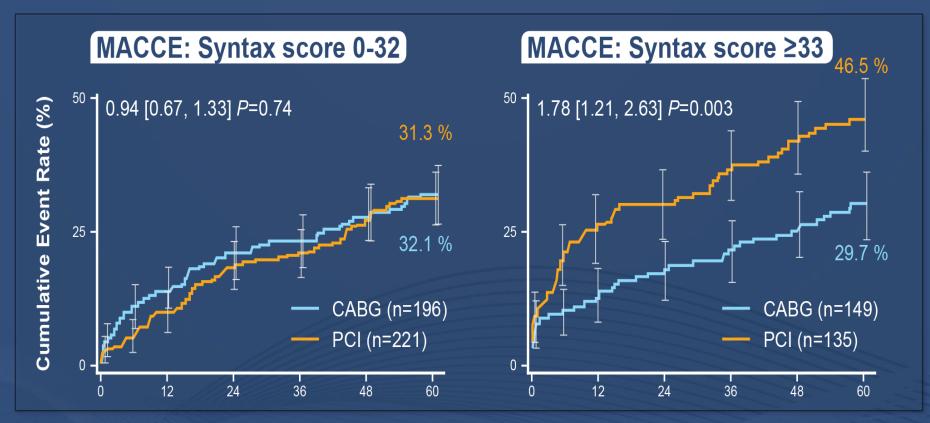
PCI for ostial/midshaft lesions was associated with clinical outcomes comparable to those observed with CABG


8™ COMPLEX PCI 2023 MAKE IT SIMPLEI: TECHNICAL FORUM A TO Z

Naganuma et al. JACC Cardiovasc Interv, 2014

Long-term Outcomes of PCI vs. CABG

5-year outcomes of the LM subgroup of the <u>SYNTAX</u> trial :PCI (N=357) vs. CABG (N=348)


At 5 years, no difference in MACCE was found between PCI and CABG, but PCI was accompanied by a higher rate of repeat revascularization.

Morice et al. Circulation, 2014

Long-term Outcomes of PCI vs. CABG

5-year outcomes of the LM subgroup of the <u>SYNTAX</u> trial :PCI (N=357) vs. CABG (N=348)

MACCE were similar between arms in patients with low/intermediate SYNTAX scores but significantly increased in patients with high scores.

Morice et al. Circulation, 2014

Long-term Outcomes of PCI vs. CABG 5-year outcomes of the randomized <u>PRECOMBAT</u> trial :PCI (N=300) vs. CABG (N=300)

Primary end point: Major adverse cardiac or cerebrovascular event

During 5 year follow-up, no significant difference in the rate of MACCE was observed between the PCI and CABG groups.

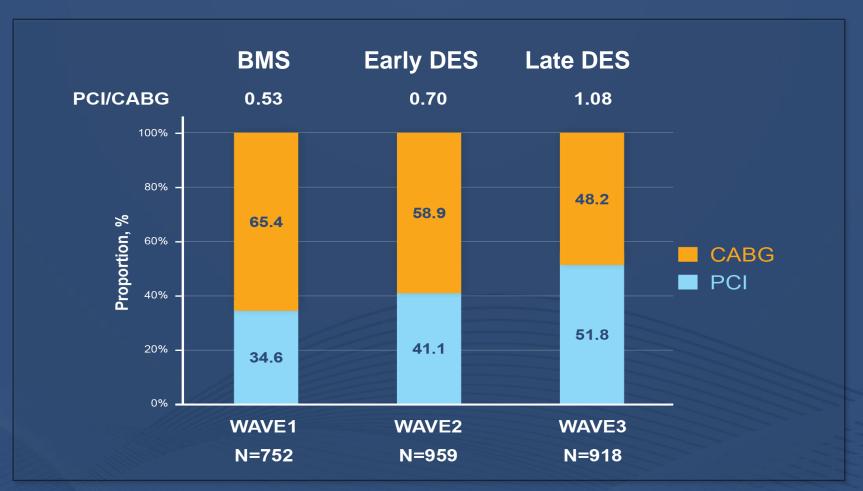
COMPLEX PCI 2023 MAKE IT SIMPLEI: TECHNICAL FORUM A TO

Ahn et al. JACC, 2015

Long-term Outcomes of PCI vs. CABG 5-year outcomes of the randomized <u>PRECOMBAT</u> trial :PCI (N=300) vs. CABG (N=300)

Primary end point: Major adverse cardiac or cerebrovascular event SYNTAX score 0-22 SYNTAX score 23-32 SYNTAX score \geq 33 50 50 50 PCI PCI PCI % CABG % CABG % CABG Cumulative Incidence, 9 01 07 00 01 00 Cumulative Incidence, 00 00 00 00 00 Cumulative Incidence, 00 01 00 02 02 04 P=0.97 P=0.083 P=0.41 24.2% 21.7% 13.0% 19.2% 12.5% 12.6% 0 Years Since Randomization Years Since Randomization Years Since Randomization Patients at Risk Patients at Risk Patients at Risk PCI 129 109 103 PCI 102 82 58 120 117 114 93 87 83 PCI 48 44 44 41 CABG 104 89 98 97 93 87 80 CABG 97 92 88 86 80 CABG 68 62 61 59 58 53

During 5 year follow-up, no significant difference in the rate of MACCE was observed between the PCI and CABG groups.

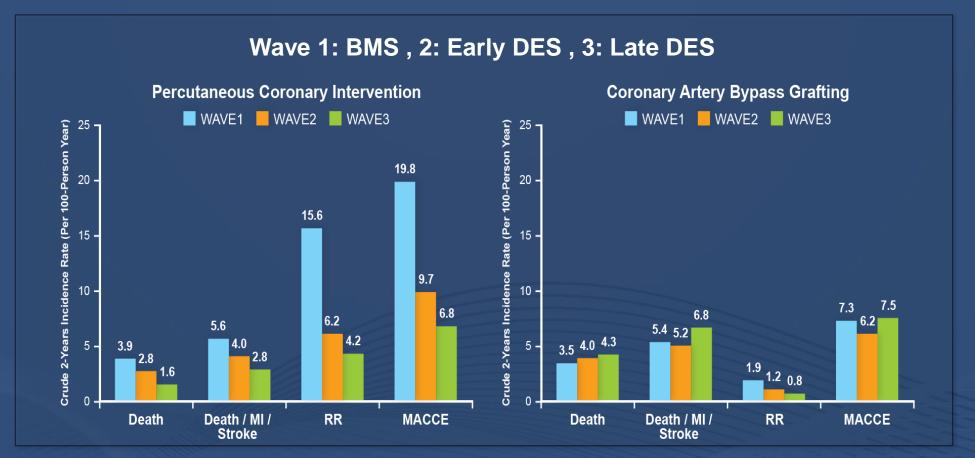


Ahn et al. JACC, 2015

Temporal Trends

Data From the Asan Medical Center-LM Revascularization Registry

The proportion of PCI is significantly increasing.

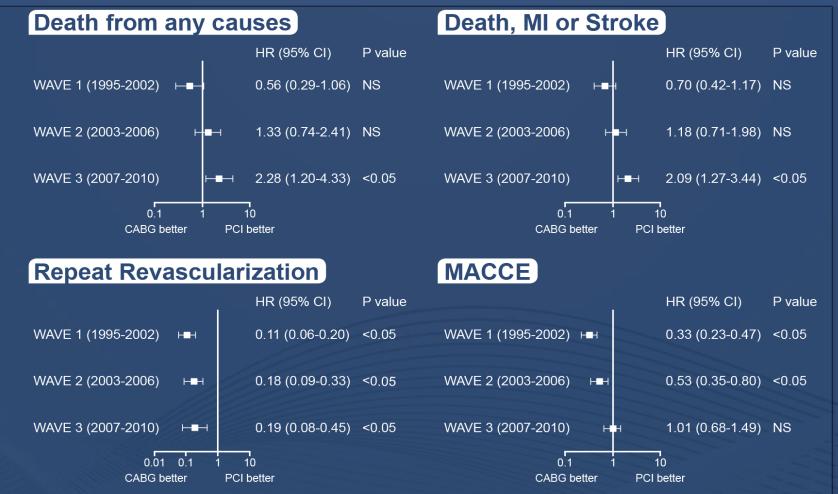


Park et al. Circ Cardiovasc Interv, 2015

Temporal Trends

Data From the Asan Medical Center-LM Revascularization Registry

The incidence of adverse events is gradually decreasing with PCI, but the change has been insignificant with CABG.

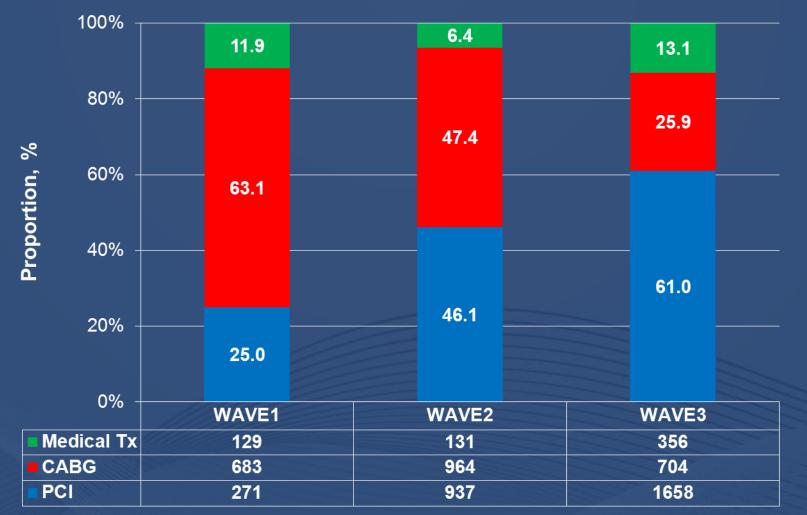

8™ COMPLEX PCI 2023 MAKE IT SIMPLEI: TECHNICAL FORUM A TO Z

Park et al. Circ Cardiovasc Interv, 2015

Temporal Trends

Data From the Asan Medical Center-LM Revascularization Registry

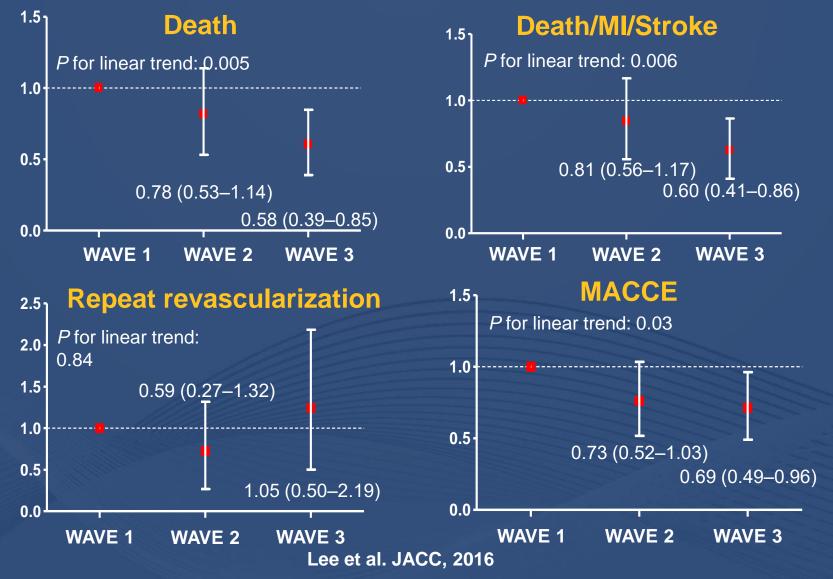
The trend favoring PCI was observed with the coronary stent evolving.


8™ COMPLEX PCI 2023 MAKE IT SIMPLEI: TECHNICAL FORUM A TO Z

Park et al. Circ Cardiovasc Interv, 2015

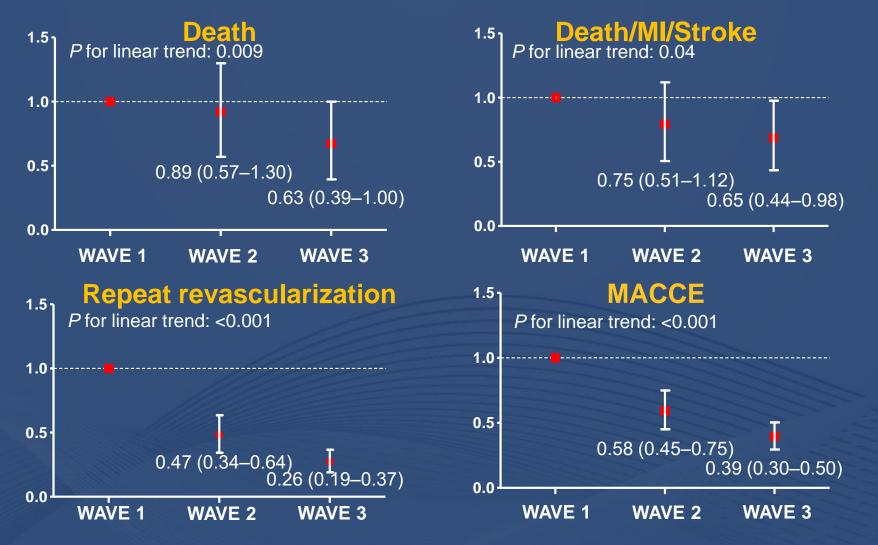
IRIS-MAIN registry

50 academic and community hospitals in Asia (*n*=5883)


Historical time periods: WAVE1: 1995 – 2002, WAVE2: 2003 – 2006, WAVE3: 2007 – 2013

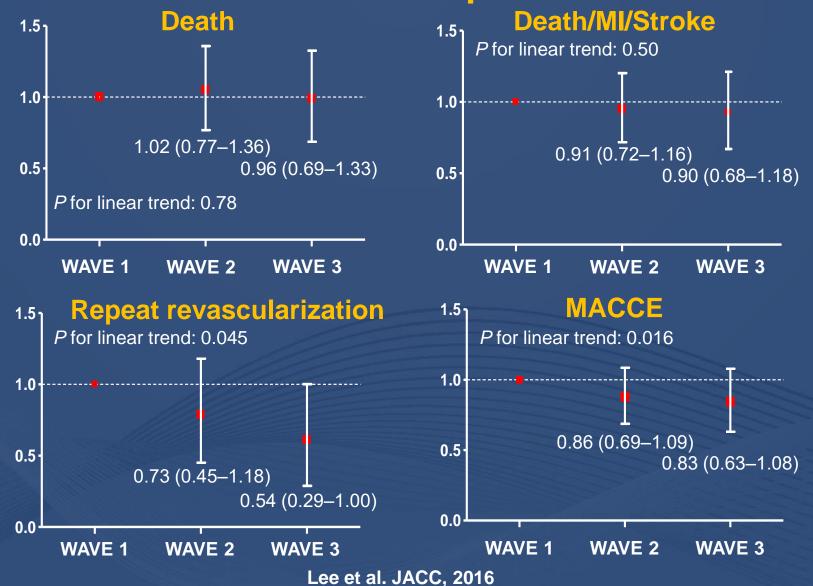
Lee et al. JACC, 2016

IRIS-MAIN registry Medical Therapy Group



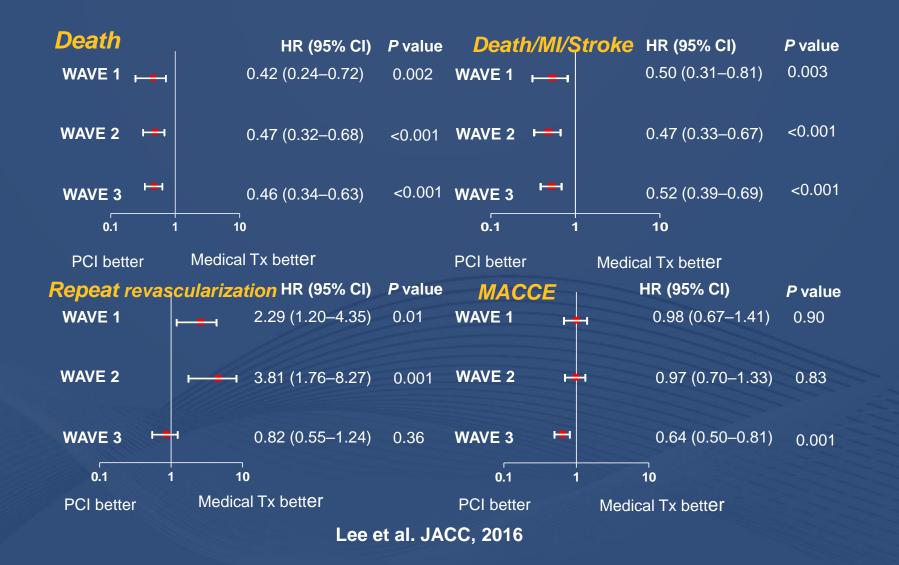
IRIS-MAIN registry

PCI Group



IRIS-MAIN registry

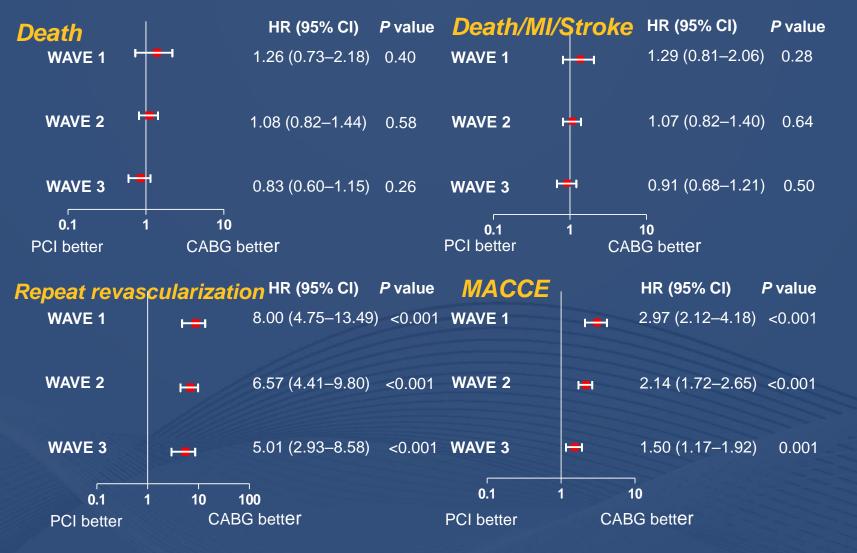
CABG Group



8TH COMPLEX PCI 2023 MAKE IT SIMPLEI: TECHNICAL FORUM A TO Z

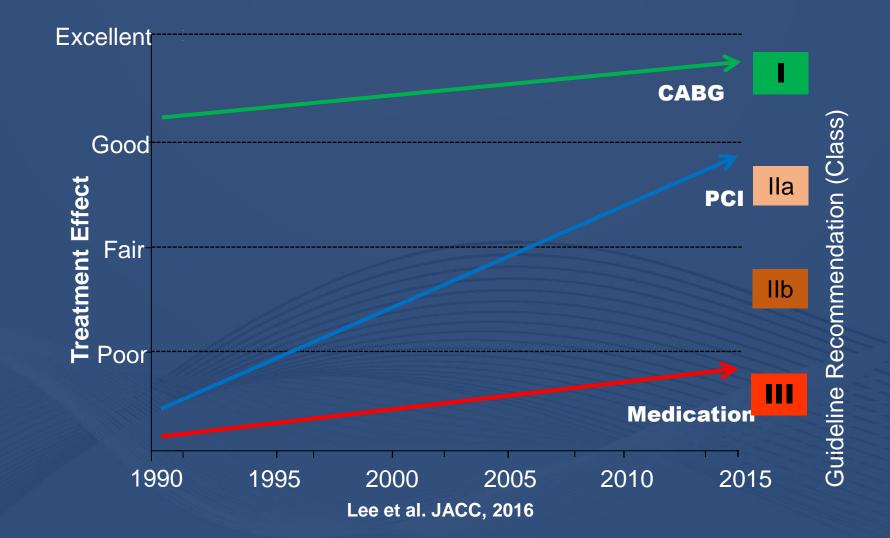
IRIS-MAIN registry PCI versus Medical Tx

CHNICAL FORUM A TO 3


IRIS-MAIN registry

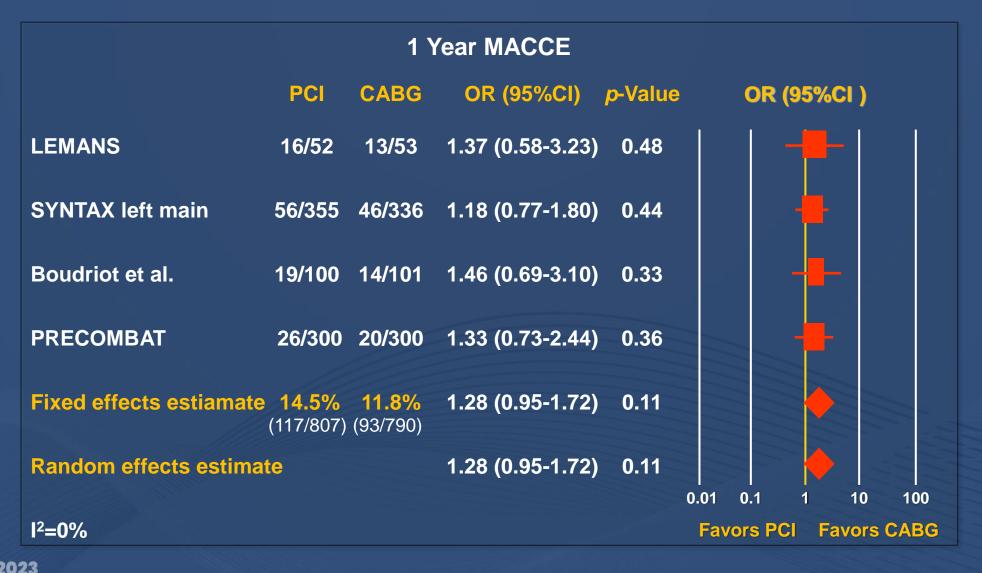
CABG versus Medical Tx

IRIS-MAIN registry PCI versus CABG



Lee et al. JACC, 2016

IRIS-MAIN registry


Secular Changes of Treatment Effect of Each Treatment Stratum

8™ COMPLEX PCI 2023 MAKE IT SIMPLEI: TECHNICAL FORUM A TO Z

PCI vs. CABG for Left Main Disease Meta-analysis of 4 RCTs, 1,611 Patients

Capodanno et al, JACC, 2011

PCI vs. CABG for Left Main Disease Meta-analysis of 24 studies, 14,203 patients

According to follow-up duration

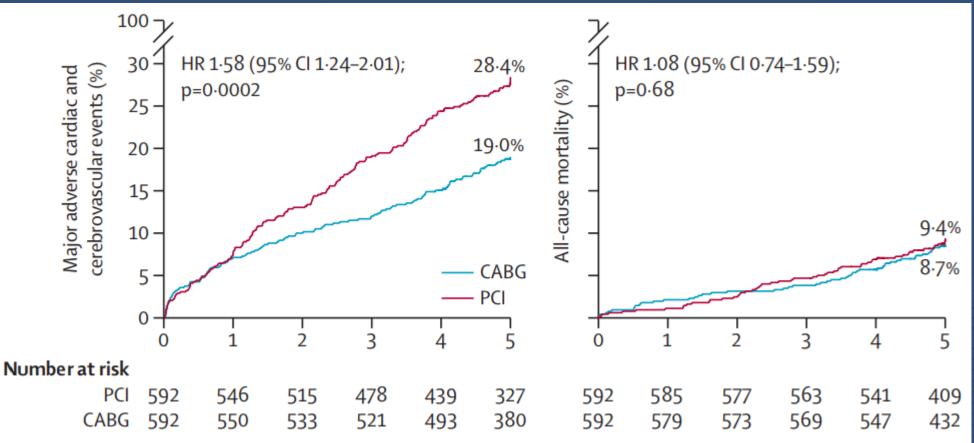
<u>Time</u> Point	<u>No. of</u> <u>Studies</u>	<u>Sample</u> <u>Size</u>	<u>Statistics</u>							
				Odds ratio	Lower limit	Upper limit	p-Value			
1 Year	10	4515		0.938	0.659	1.337	0.72			
2 Year	9	4953		1.011	0.739	1.383	0.95			
3 Year	5	3104	+	1.149	0.608	1.633	0.44			
4 Year	4	5329		0.829	0.619	1.110	0.20			
5 Year	5	3360	•	0.641	0.512	0.803	<0.001			
		ľ	0.1 1 10 Favor PCI Favor	CABG						

* MACE = death, MI, or stroke

Athappan et al. JACC: Cardiovascular Interventions, 2013

PCI vs. CABG for Left Main Disease Meta-analysis of 24 studies, 14,203 patients According to SYNTAX score

	F	avor PCI	Fa	vor CABG	
		0.1	1	10	
	Total Overall		+	1.09 (0.80, 1.4	48)
	Overall	935	-	0.75 (0.31, 1.8	
	CREDO-Kyoto	436 <u>–</u> 277		0.39 (0.17, 0.9 1.62 (0.86, 3.0	
_ow	SYNAX MAIN-COMPARE	222		0.62 (0.24, 1.	
	Overall	970	-	1.05 (0.71, 1.	
	CREDO-Kyoto	308		1.42 (0.75, 2.7	
ntermediate	MAIN-COMPARE	467		0.67 (0.29, 1.8 1.03 (0.54, 1.9	
ntormodiato	SYNAX	195			55)
	Overall	1134	-	1.44 (1.01, 2.0	
	CREDO-Kyoto	347		1.92 (1.09, 3.3	
ligh	SYNAX MAIN-COMPARE	284 662		1.37 (0.74, 2.8 1.03 (0.52, 2.0	
	0)())())				
		Ν		95% CI	

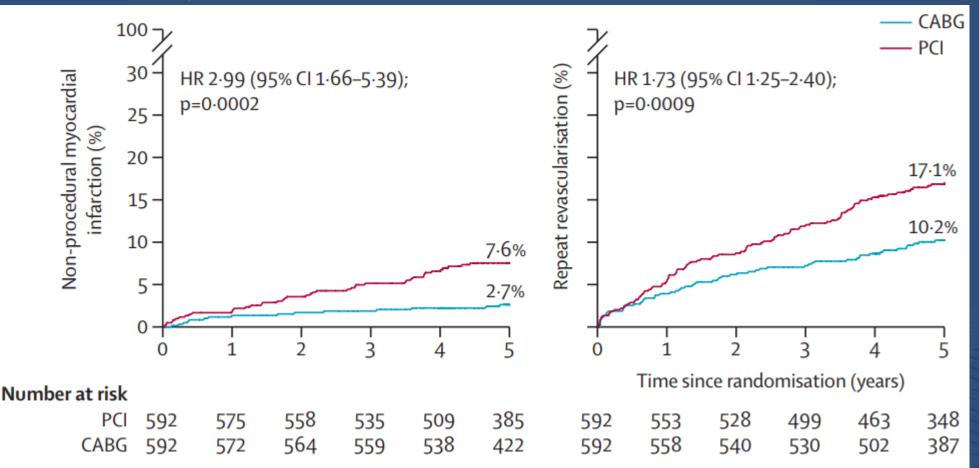

Athappan et al. JACC: Cardiovascular Interventions, 2013

PCI vs. CABG for Left Main Disease

5-year clinical outcomes of the randomized <u>NOBLE</u> trial :PCI (N=592) vs. CABG (N=592)

Primary Endpoint: MACCE, All-cause mortality

MAKE IT SIMPLEI: TECHNICAL FORUM A

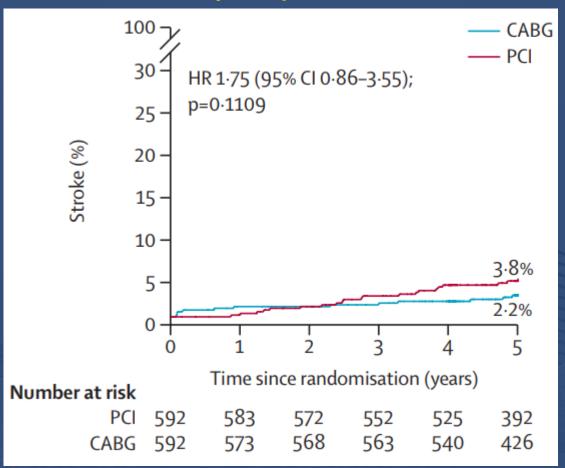

Holm NR et al. Lancet 2020.

PCI vs. CABG for Left Main Disease

5-year clinical outcomes of the randomized **NOBLE** trial :PCI (N=592) vs. CABG (N=592)

Primary Endpoint: Non-procedural MI, Repeat revascularization

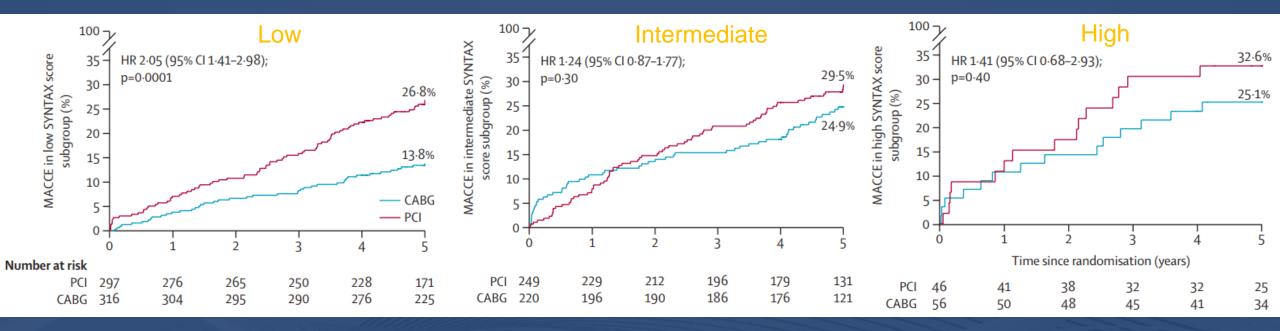
OMPLEX PCI 202 KE IT SIMPLEI: TECHNICAL FORUM A T


Holm NR et al. Lancet 2020.

PCI vs. CABG for Left Main Disease

5-year clinical outcomes of the randomized <u>NOBLE</u> trial :PCI (N=592) vs. CABG (N=592)

Primary Endpoint: Stroke



Holm NR et al. Lancet 2020.

5-year clinical outcomes of the randomized NOBLE trial :PCI (N=592) vs. CABG (N=592)

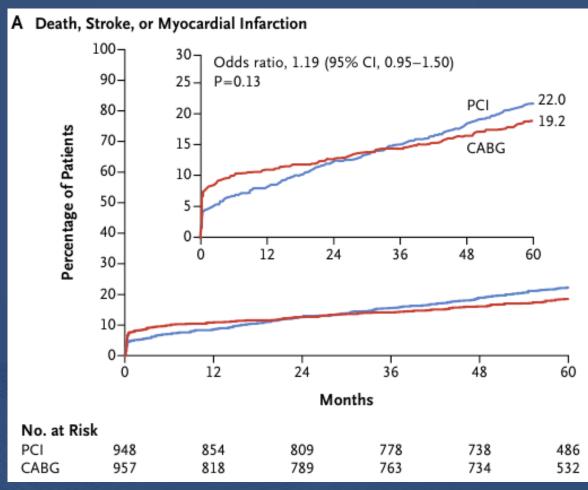
Primary Endpoint(MACCE) by SYNTAX score subgroups

A low score is defined as 1–22; intermediate is 23–32; high is \geq 33.

Holm NR et al. Lancet 2020.

5-year outcomes of the randomized **EXCEL** trial :PCI (N=948) vs. CABG (N=957)

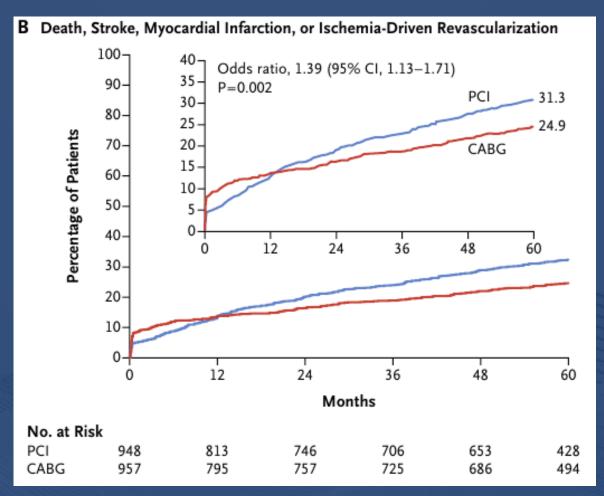
	PCI (n=948)	CABG (n=957)	Diff [95% CI]	OR [95%CI]
Primary endpoint				
Death, stroke or MI at 5 years	22.0%	19.2%	2.8 [-0.9 to 6.0]	1.19 (0.95-1.05)
Secondary endpoints				
Death from any cause	13.0%	9.9%	3.1 [0.2 to 6.1]	1.38 (1.03-1.85)
Death, stroke, MI or ischemia-driven revasc	31.3 %	24.9 %	6.2 [2.4-10.6]	1.39 (1.13-1.71)



G.W. Stone et al. N Engl J Med 2019.

5-year outcomes of the randomized EXCEL trial :PCI (N=948) vs. CABG (N=957)

Primary Endpoint Death, Stroke or MI at 5 Years



5-year outcomes of the randomized EXCEL trial :PCI (N=948) vs. CABG (N=957)

Death, Stroke, MI or Ischemia-driven Revascularization at 5 Years

G.W. Stone et al. N Engl J Med 2019.

TH COMPLEX PCI 2023 AKE IT SIMPLEI: TECHNICAL FORUM A TO Z

5-year outcomes of the randomized **EXCEL** trial :PCI (N=948) vs. CABG (N=957)

Secondary Outcomes Analysis

Outcome		PCI = 948)		ABG =957)	Difference in Event Rates (95% CI)	Odds Ratio (95% CI)
	Events	Event Rate	Events	Event Rate	. ,	
	no.	%	no.	%	percentage points	
Death from any cause	119	13.0	89	9.9	3.1 (0.2 to 6.1)	1.38 (1.03 to 1.85)
Cardiovascular	61	6.8	49	5.5	1.3 (–0.9 to 3.6)	1.26 (0.85 to 1.85)
Definite cardiovascular	45	5.0	40	4.5	0.5 (-1.4 to 2.5)	1.13 (0.73 to 1.74)
Undetermined cause	16	1.9	9	1.1	0.9 (–0.3 to 2.0)	1.78 (0.78 to 4.06)
Noncardiovascular	58	6.6	40	4.6	2.0 (-0.2 to 4.2)	1.47 (0.97 to 2.23)
Stroke	26	2.9	33	3.7	–0.8 (–2.4 to 0.9)	0.78 (0.46 to 1.31)
Myocardial infarction	95	10.6	84	9.1	1.4 (-1.3 to 4.2)	1.14 (0.84 to 1.55)
Periprocedural	37	3.9	57	6.1	-2.1 (-4.1 to -0.1)	0.63 (0.41 to 0.96)
Nonperiprocedural	59	6.8	31	3.5	3.2 (1.2 to 5.3)	1.96 (1.25 to 3.06)
Ischemia-driven revascularization	150	16.9	88	10.0	6.9 (3.7 to 10.0)	1.84 (1.39 to 2.44)
PCI	125	14.1	80	9.1	4.9 (1.9 to 7.9)	1.65 (1.22 to 2.22)
CABG	38	4.3	8	0.9	3.4 (1.9 to 4.9)	4.90 (2.27 to 10.56)

CVF

MAKE IT SIMPLEI: TECHNICAL FORUM A TO

G.W. Stone et al. N Engl J Med 2019.

5-year outcomes of the randomized <u>EXCEL</u> trial :PCI (N=948) vs. CABG (N=957)

Additional Outcomes Analysis

Outcome		PCI = 948)		ABG = 957)	Difference in Event Rates (95% CI)	Odds Ratio (95% CI)
	Events	Event Rate	Events	Event Rate		
	no.	%	no.	%	percentage points	
Additional outcomes						
Any revascularization	153	17.2	92	10.5	6.7 (3.5 to 9.9)	1.79 (1.36 to 2.36)
Stent thrombosis	16	1.8	0	0	—	—
Definite	10	1.1	0	0	—	—
Probable	6	0.7	0	0	—	—
Symptomatic graft stenosis or occlusion	0	0	58	6.5	—	—
Therapy failure†	10	1.1	58	6.5	-5.4 (-7.2 to -3.6)	0.16 (0.08 to 0.32)
Cerebrovascular events <u>‡</u>	29	3.3	46	5.2	-1.9 (-3.8 to 0)	0.61 (0.38 to 0.99)
Transient ischemic attack	3	0.3	14	1.6	-1.3 (-2.2 to -0.4)	0.21 (0.06 to 0.74)

5-year outcomes of the randomized **EXCEL** trial:PCI (N=948) vs. CABG (N=957)

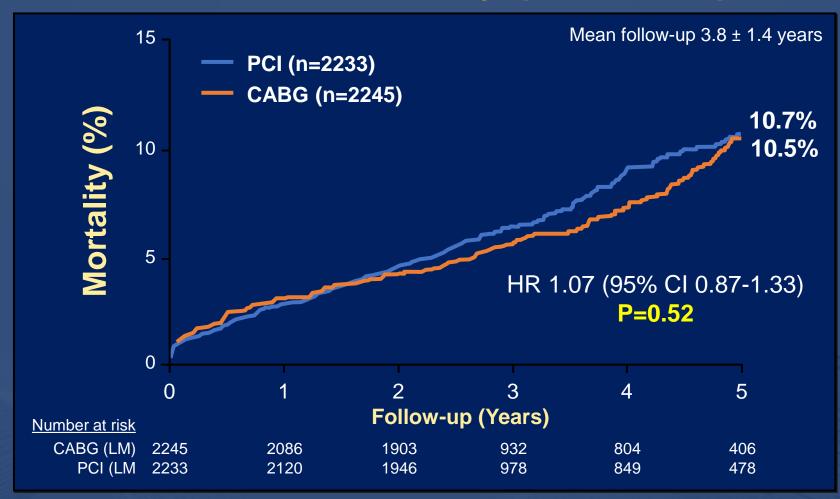
Subgroup analysis of Primary outcomes at 5 Years

Subgroup	PCI (N=	948)	CABG (N	=957)	Odds Ratio (95% CI)	
	Events/total patients no.	Event rate %	Events/total patients no.	Event rate %		
All patients	203/948	22.0	176/957	19.2	-	1.19 (0.95-1.50)
Age (median cutoff)						, ,
≥67 yr	123/466	27.2	98/472	21.8	-	1.39 (1.02-1.89)
<67 yr	80/482	16.9	78/485	16.6		1.00 (0.71-1.40)
Sex	,					, ,
Male	145/722	20.6	134/742	18.7		1.12 (0.86-1.46)
Female	58/226	26.3	42/215	21.1		1.39 (0.88-2.20)
Diabetes mellitus, medically treated	,		,			, ,
Yes	72/256	29.0	62/249	25.5	_	1.24 (0.83-1.86)
No	131/692	19.4	114/707	16.9		1.17 (0.89-1.55)
Chronic kidney disease	,		,			, ,
Estimated GFR ≤60 ml/min	54/164	34.0	37/144	27.6		1.44 (0.86-2.39)
Estimated GFR > 60 ml/min	147/770	19.5	135/791	17.6	—	1.13 (0.87-1.47)
Left ventricular ejection fraction						(,
≥50%	158/782	20.6	144/796	18.7		1.14 (0.88-1.46)
<50%	33/111	31.5	26/115	24.2		1.35 (0.73-2.49)
Geographic region	,					,
North America	89/381	24.2	61/371	17.3	e	1.57 (1.09-2.26)
Europe	111/534	21.1	102/541	19.6		1.09 (0.81-1.48)
Other	3/33	9.6	13/45	29.6		0.24 (0.06-0.96)
Non–left main diseased coronary arteries (core laboratory as sessment)						
0	33/163	20.7	23/167	14.3		1.55 (0.86-2.78)
1	60/292	21.2	61/292	21.9	_	0.94 (0.62-1.40)
2	79/325	25.0	50/295	17.8	_	1.58 (1.06-2.36)
3	31/162	19.2	37/182	20.7	_	0.93 (0.54-1.59)
Left main bifurcation or trifurcation stenosis ≥50% (core laboratory assessment)	,					, ,
Yes	171/771	22.7	136/741	19.0		1.24 (0.96-1.60)
No	32/171	19.2	35/195	18.9		1.05 (0.62-1.79)
SYNTAX score (site reported)						
≤22	119/560	21.9	106/588	18.7		1.21 (0.90-1.62)
23-32	84/386	22.2	70/366	20.0		1.16 (0.81-1.67)
SYNTAX score (core laboratory assessment)						, ,
≤22	49/294	17.2	58/364	16.7	_	0.99 (0.65-1.51)
23-32	91/392	23.7	69/346	20.7		1.22 (0.85-1.74)
≥33	56/228	25.0	42/216	20.0		1.36 (0.86-2.15)
					0.2 0.5 1.0 1.5 2.0	5.0
					V.2 V.3 I.V I.3 Z.V .	

COMPLEX PCI 2023 G.W. Stone et al. N Engl J Med 2019.

PCI Better CABG Better

Role of Left Main PCI After EXCEL and NOBLE

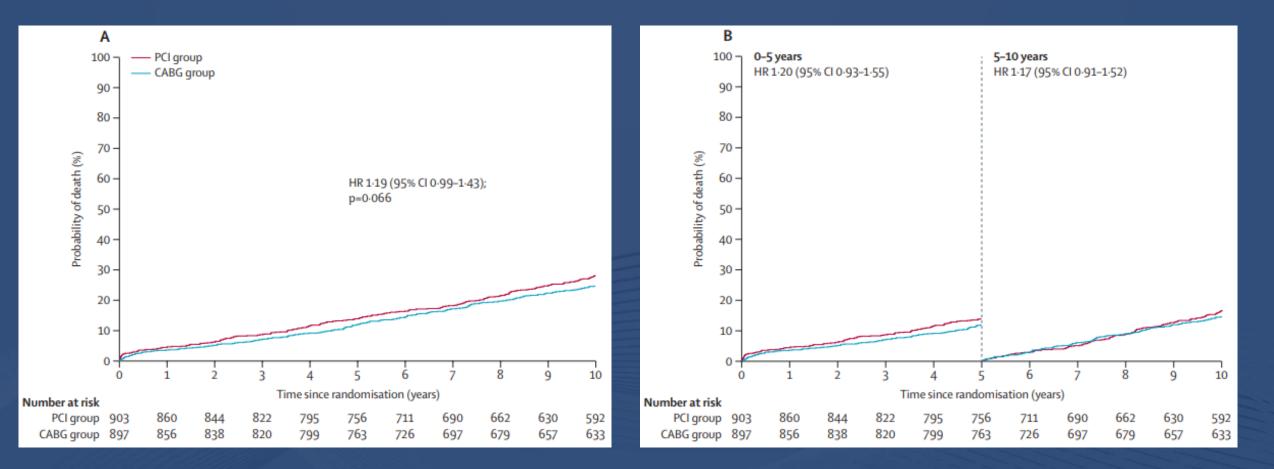

Variables	EXCEL	NOBLE
Patients (no.)	1,905	1,201
Median follow-up	5 year	4.9 year
HR (95% CI), CABG/PCI		
Primary endpoint	1.19 (0.95-1.05)	1.58 (1.24-2.01)
All-cause death	1.38 (1.03-1.85)	1.08 (0.74-1.59)
Cardiac death	1.3 (-0.9-3.6)	0.99 (0.57-1.73)
MI	1.4 (-1.3-4.2)	2.99 (1.66-5.39)
Stroke	-0.8 (-2.4-0.9)	1.75 (0.86-3.55)
Revascularization	6.9 (3.7-10.0)	1.73(1.25-2.40)

NOBLE: Stent thrombosis (2% NOBLE vs. 1.8% EXCEL), non-procedural MI excluded (3% CABG vs. 8% PCI)

Individual-patient-data Analysis from 11 PCI vs. CABG Trials 11,518 randomized pts; 4,478 (38.9%) with left main ds. All-cause Mortality (Left Main)

8TH COMPLEX PCI 2023 MAKE IT SIMPLEI: TECHNICAL FORUM A TO Z

Head SJ et al. Lancet 2018;391:939-48


Individual-patient-data Analysis from 11 PCI vs. CABG Trials 11,518 randomized pts; 4,478 (38.9%) with left main ds. All-cause Mortality (LM patients)

	PCI (n=2,233)	CABG (n=2,245)	HR (95%CI]	P value	P _{int}
Overall mortality	10.7% (174)	10.5% (158)	1.07 [0.87, 1.33]	0.52	
Diabetes	16.5% (71)	13.4% (51)	1.34 [0.93, 1.91]	0.11	0.13
No diabetes	8.8% (104)	9.6% (107)	0.94 [0.72, 1.23]	0.65	0.13
SYNTAX score 0-22	8.1% (45)	8.3% (49)	0.91 [0.60, 1.36]	0.64	
SYNTAX score 23-32	10.8% (67)	12.7% (63)	0.92 [0.65, 1.30]	0.65	0.38 (0.06 for trend)
SYNTAX score ≥33	15.0% (56)	12.4% (45)	1.39 [0.94, 2.06]	0.10	,

Head SJ et al. Lancet 2018;391:939-48

10-year outcomes of the randomized <u>SYNTAX</u> Extended Survival (SYNTAXES) study: *PCI (N=357) vs. CABG (N=348)*

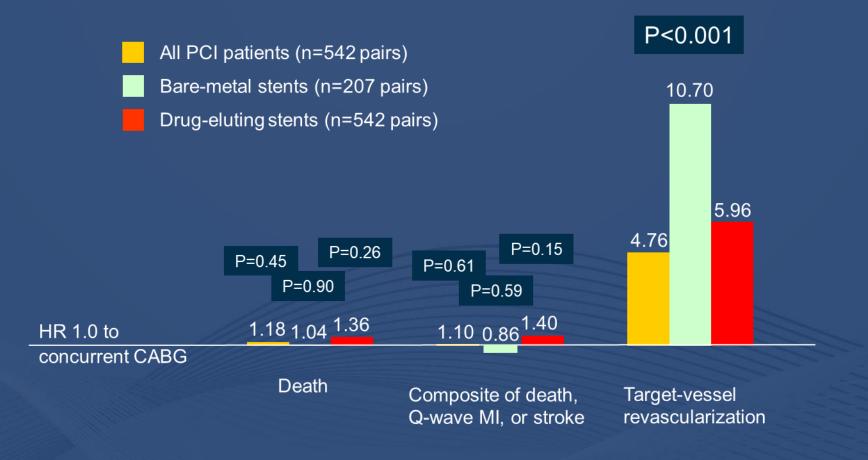
8™ COMPLEX PCI 2023 MAKE IT SIMPLEI: TECHNICAL FORUM A TO Z

Thuijs DJFM et al., Lancet, 2019



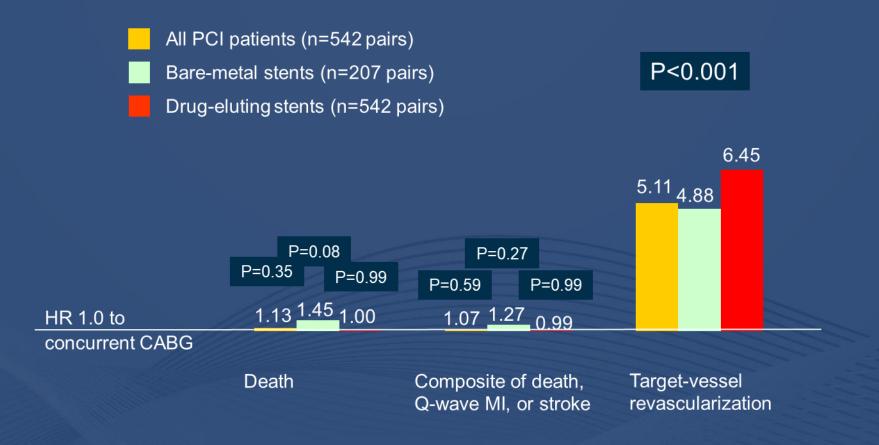
10-year outcomes of the randomized <u>SYNTAX</u> Extended Survival (SYNTAXES) study: *PCI (N=357) vs. CABG (N=348)*

Prespecified Subgroup analysis of 10-year all-cause death


	PCI group	CABG group		HR (95% CI)	P _{interaction}
Type of coronary disease					
Left main coronary artery disease	95/357	98/348		0.92 (0.69–1.22)	0.023
Three-vessel disease*	153/546	114/549	-	1.42 (1.11–1.81)	
Medically treated diabetes					
Yes	80/231	72/221		1.10 (0.80–1.52)	0.60
No	168/672	140/676		1.23 (0.98–1.53)	
Coronary disease complexity					
SYNTAX score ≤22	65/299	53/275		1.11 (0.77–1.60)	0.20†
SYNTAX score 23–32	80/310	72/300		1.07 (0.78–1.47)	
SYNTAX score ≥33	101/290	82/315	—	1.47 (1.10–1.96)	
			0.5 0.8 1.0 1.25 2.0 Favours PCI Favours CABG		

MAIN COMPARE Registry, 3-Year

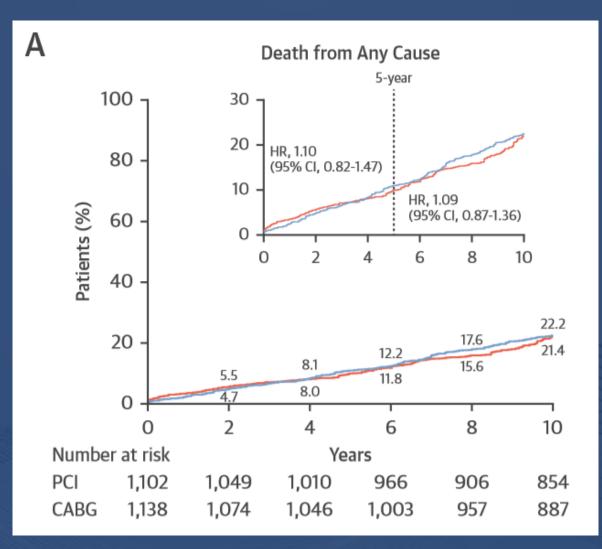
Adjusted HR by Use of PS Matching



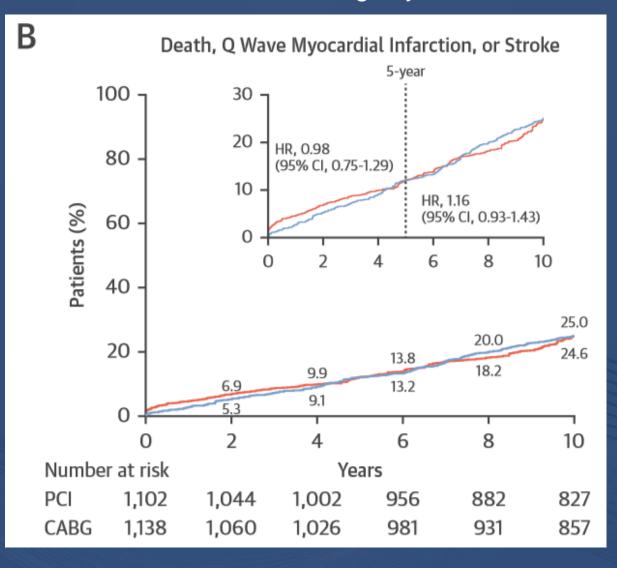
Seung KB, Park DW, Park SJ, et al. N Engl J Med 2008;358:1781-92

MAIN COMPARE Registry, 5-Year

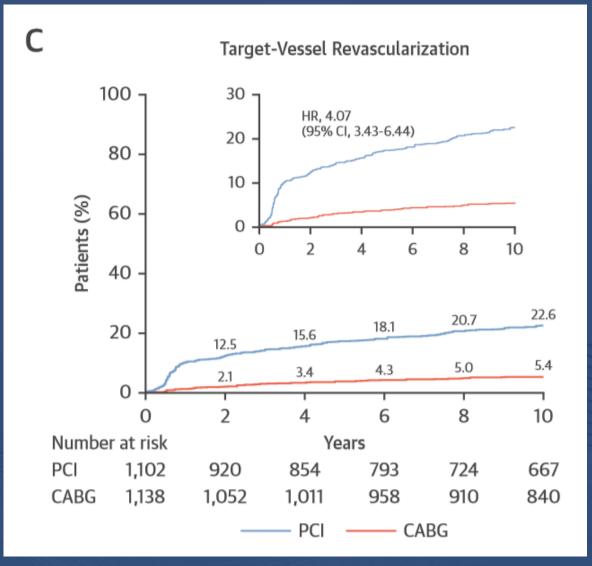
Adjusted HR by Use of IPTW Method



Park DW, Park SJ, et al. J Am Coll Cardiol. 2010;56:117-24.

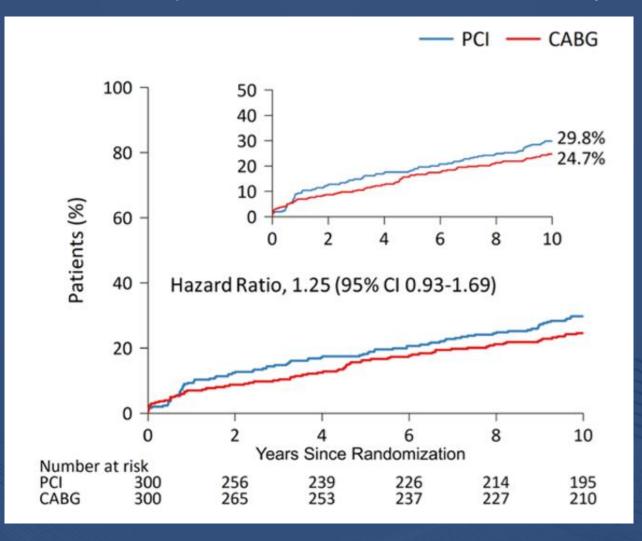

10-year outcomes of the MAIN-COMPARE registry : All-cause death

Park et al. J Am Coll Cardiol. 2018;72:2813-22


10-year outcomes of the MAIN-COMPARE registry : Death, Q-wave MI, or stroke

Park et al. J Am Coll Cardiol. 2018;72:2813-22

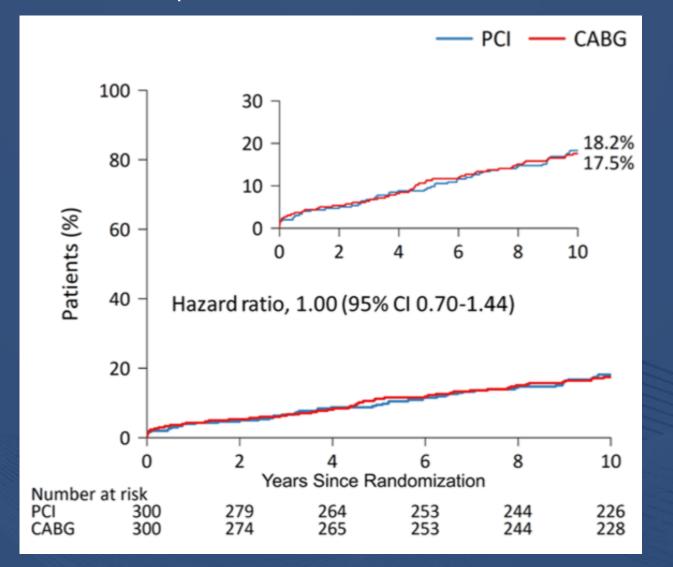
10-year outcomes of the MAIN-COMPARE registry : Target-Vessel Revascularization


Park et al. J Am Coll Cardiol. 2018;72:2813-22

Hazard Ratios for Clinical Outcomes Before and After 5-Year of Follow-up

Outcome	Overall Coh	ort	Wave 1* (BN	MS)	Wave 2 [*] (DI	ES)
	Hazard Ratio [†] (95% CI)	P value	Hazard Ratio [†] (95% CI)	P value	Hazard Ratio [†] (95% CI)	P value
Analyses with IPTW	N = 2240 pati (PCI 1102, CAB		N = 766 patie (BMS 318, CAB		N = 1474 pat (DES 784, CAB	
Death		0.64		0.05		0.15
0~5 years	1.10 (0.82–1.47)	0.53	1.65 (0.91–2.98)	0.10	1.02 (0.71–1.46)	0.91
>5 years	1.09 (0.87–1.36)	0.48	0.68 (0.46–1.02)	0.06	1.35 (1.00–1.81)	0.05
Composite outcome (death, Q-wave MI or stroke)		0.43		0.06		0.03
0~5 years	0.98 (0.75–1.29)	0.91	1.46 (0.84–2.53)	0.18	0.91 (0.66–1.27)	0.59
>5 years	1.16 (0.93–1.43)	0.19	0.67 (0.46–1.00)	0.05	1.46 (1.10–1.94)	0.009
TVR, All period	4.07 (3.43–6.44)	<0.001	4.45 (2.81–7.05)	<0.001	5.82 (3.77–9.01)	<0.001

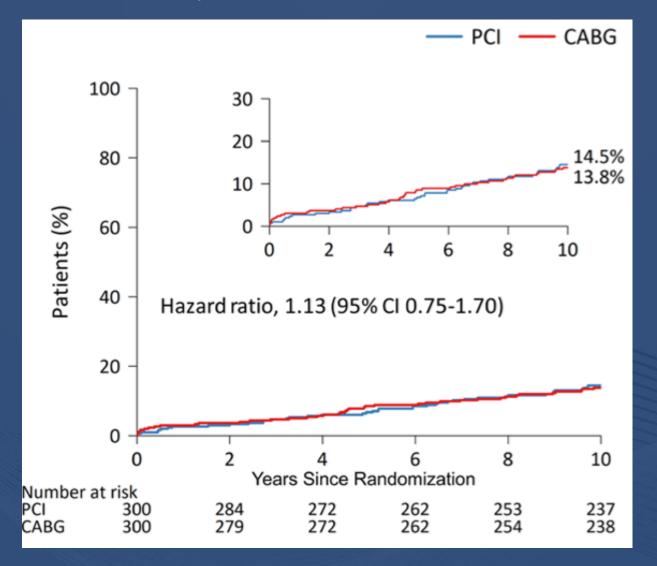
Extended Follow-Up of the **PRECOMBAT** trial : Primary composite outcome



COMPLEX PCI 2023

DW Park et al. Circulation 2020;141:1437-1446

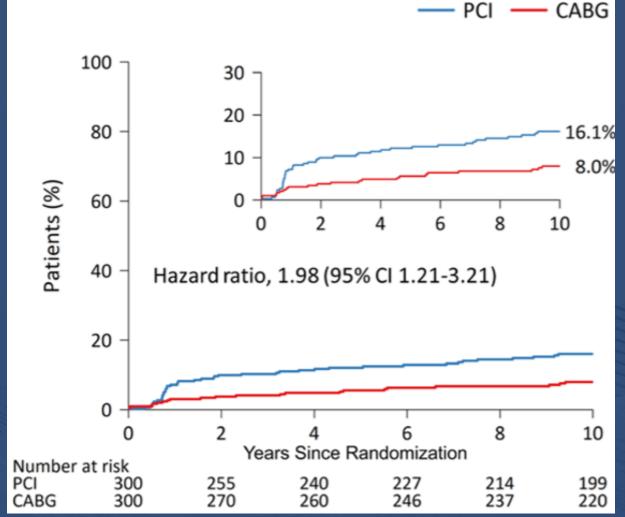
Extended Follow-Up of the **PRECOMBAT** trial : Death, MI, or Stroke



8TH COMPLEX PCI 2023 Make it simplei: technical forum a to z

DW Park et al. Circulation 2020;141:1437-1446

Extended Follow-Up of the **PRECOMBAT** trial : All-cause Death

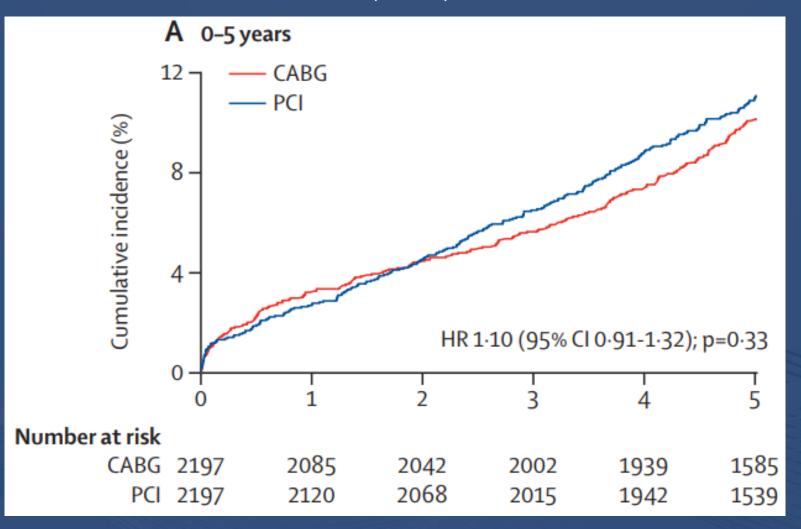


DW Park et al. Circulation 2020;141:1437-1446

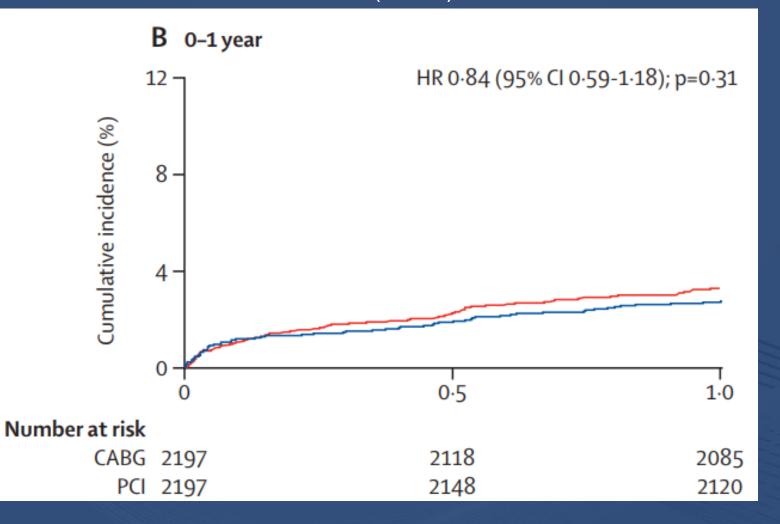
Extended Follow-Up of the **PRECOMBAT** trial : Target-Vessel revascularization

DW F

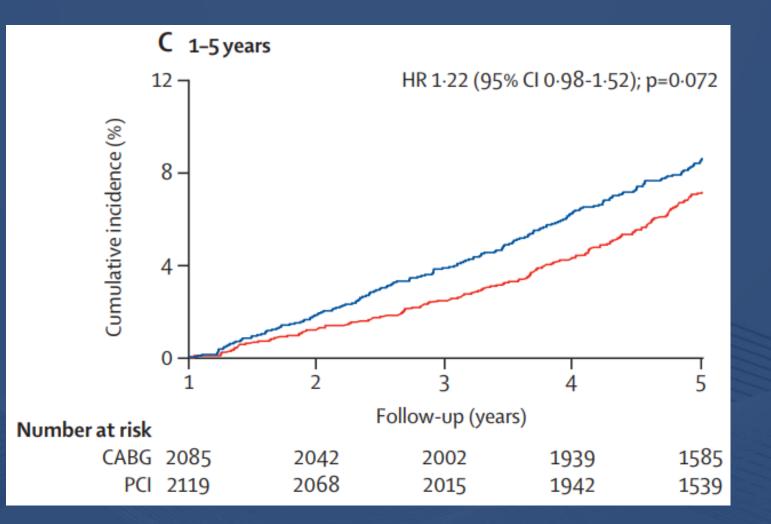
PCI vs. CABG for Left Main Disease Extended Follow-Up of the PRECOMBAT trial


Subgroup	PCI	CABG	Hazard	d Ratio (95% CI)	P value for Interaction
	no. /tota	al no. (%)	0.30		
Overall	87/300 (29.8)	72/300 (24.7)	+=-	1.25 (0.93-1.69)	
Age					0.99
<65	42/171 (25.0)	27/151 (18.2)	+=-	- 1.32 (0.84-2.08)	
≥65	45/129 (36.3)	45/149 (31.4)	+=-	- 1.30 (0.87-1.95)	
Sex					0.95
Male	68/228 (30.6)	54/231 (24.0)		1.24 (0.87-1.75)	
Female	19/72 (27.1)	18/69 (26.9)		- 1.12 (0.60-2.09)	
Diabetes					0.70
Yes	37/102 (36.8)	24/90 (27.3)		- 1.25 (0.76-2.05)	
No	50/198 (26.1)	48/210 (25.6)		1.16 (0.79-1.69)	
Clinical presentation					0.89
Non-acute coronary syndrome	42/160 (26.7)	30/137 (22.8)	+=	- 1.35 (0.87-2.11)	
Acute coronary syndrome	45/140 (33.4)	42/163 (26.2)		- 1.29 (0.86-1.95)	
Left main involvement					0.54
Ostium and shaft	23/99 (23.6)	23/111 (21.2)		- 1.12 (0.65-1.91)	
Distal bifurcation	64/200 (33.1)	48/183 (28.1)		1.32 (0.91-1.90)	
Extent of diseased vessel					0.048
Left main only	4/27 (15.1)	5/34 (14.9)		1.55 (0.40-5.95)	
Left main with 1-vessel disease	6/50 (13.4)	10/53 (19.8)		0.67 (0.25-1.76)	
Left main with 2-vessel disease	30/101 (30.1)	26/90 (29.9)		0.89 (0.53-1.51)	
Left main with 3-vessel disease	47/122 (40.0)	31/123 (25.6)		 1.82 (1.16-2.86) 	
Syntax score					0.63
≤22	27/131 (21.6)	23/109 (22.2)	-+-	1.01 (0.59-1.73)	
22-32	32/102 (31.8)	21/98 (22.2)			
≥33	26/58 (46.2)	24/68 (45.7)		- 1.18 (0.67-2.09)	
Complete revascularization					0.45
Yes	57/205 (28.3)	53/211 (25.7)		1.14 (0.79-1.65)	
No	30/95 (33.2)	19/89 (22.2)	+-	⊢ 1.57 (0.90−2.73)	
		0	·111	10	
			PCI	CABG	
			Better	Better	

COMPLEX PCI 2023


DW Park et al. Circulation 2020;141:1437-1446

Individual patient data meta-analysis : **SYNTAX, PRECOMBAT, NOBLE, EXCEL** all-cause death (0-5Yr)



Individual patient data meta-analysis : **SYNTAX, PRECOMBAT, NOBLE, EXCEL** all-cause death (0-1Yr)

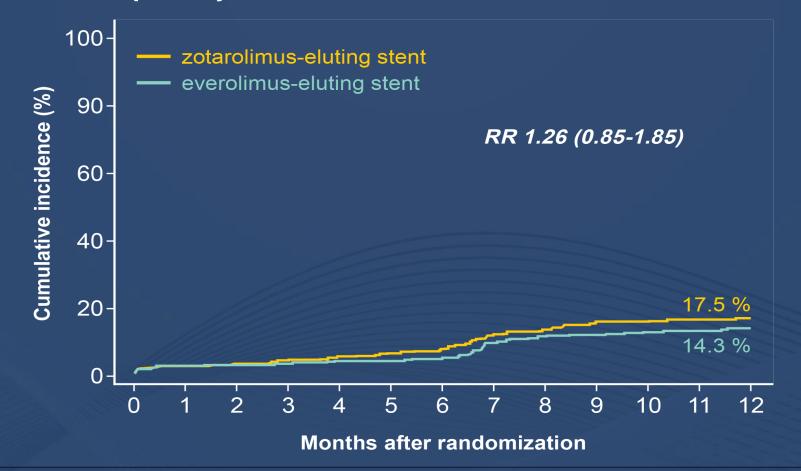
CVRF

Individual patient data meta-analysis : **SYNTAX, PRECOMBAT, NOBLE, EXCEL** all-cause death (1-5Yr)

Individual patient data meta-analysis : **SYNTAX, PRECOMBAT, NOBLE, EXCEL**

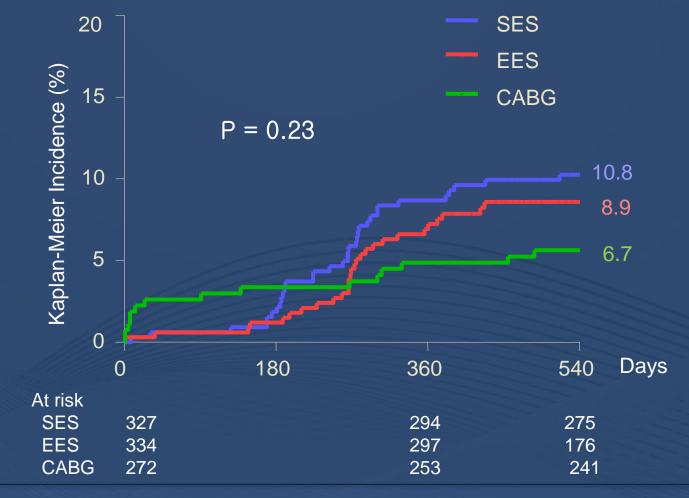
	PCI (n/N)	CABG (n/N)			HR (95% CI)	Pinterac
Age (years)						0.091
≥65 years	190/1223	162/1273			1·23 (0·99–1·51)	
<65 years	49/974	54/924			0.84 (0.57-1.24)	
Sex						0.60
Male	175/1683	164/1688			1.06 (0.86-1.31)	
Female	64/514	52/509			1.18 (0.82–1.71)	
Diabetes						0.87
Yes	84/563	74/541				
No	155/1634	142/1655			1.08 (0.86-1.36)	
Acute coronary syndrome						0.22
Yes	77/725	82/741	-		0.93 (0.68-1.27)	
No	162/1472	134/1455			- 1.19 (0.95-1.50)	
COPD						0.80
Yes	27/100	26/124	-		1.18 (0.69–2.03)	
No	158/1504	140/1478			1.10 (0.88–1.38)	
Peripheral artery disease						0.43
Yes	30/149	29/131				
No	155/1453	136/1468			1.14 (0.90–1.43)	
LVEF						0.84
<50%	44/241	46/258	-			
≥50%	168/1747	164/1815			1.04 (0.84–1.29)	
eGFR						0.23
<60 mL/min per 1.73m ²	63/268	48/263			1.30 (0.89–1.89)	
≥60 mL/min per 1.73m ²	112/1293	110/1275			0.98 (0.75-1.27)	
SYNTAX score						0-48
≤22	72/864	71/914			- 1.06 (0.77-1.48)	
23-32	97/858	87/769			0.98 (0.73-1.30)	
≥33	70/465	58/488		_	1.30 (0.92-1.84)	
Diseased vessels						0.11
Left main only	34/359	23/346			1.39 (0.82–2.36)	
Left main + 1 vessel	63/694	75/673			0.79 (0.57-1.11)	
Left main + 2 vessels	83/684	62/691			1.34 (0.96–1.86)	
Left main + ≥3 vessels	58/448	52/459			1.14 (0.78–1.66)	
Left main bifurcation						0.96
Yes	179/1638	150/1549			1.11 (0.89–1.38)	
No	58/529	59/593			1.10 (0.76–1.58)	
		0.25	0.50	1.00	2.00 4.00	

8TH COMPLEX PCI 2023 MAKE IT SIMPLEI: TECHNICAL FORUM A TO Z


LM : DES vs. DES

ISAR-LEFT MAIN 2 ZES vs. EES

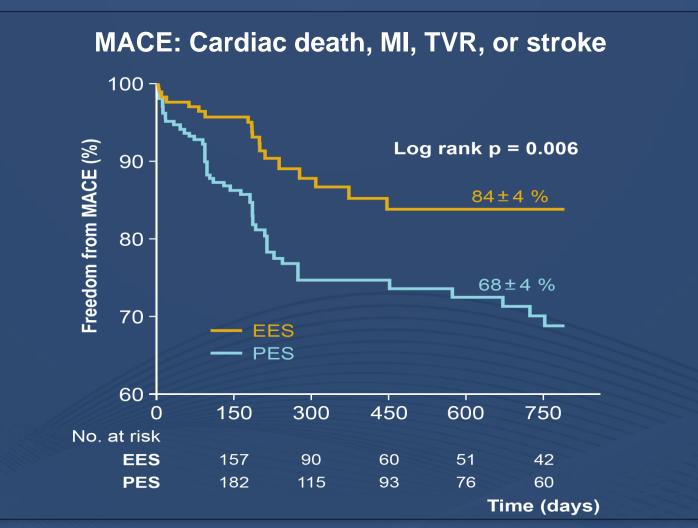
The primary outcome: all-cause death, MI, and TLR



Mehilli et al. JACC, 2013

PRECOMBAT-2 Study EES vs. SES

Primary end point: Major adverse cardiac or cerebrovascular event

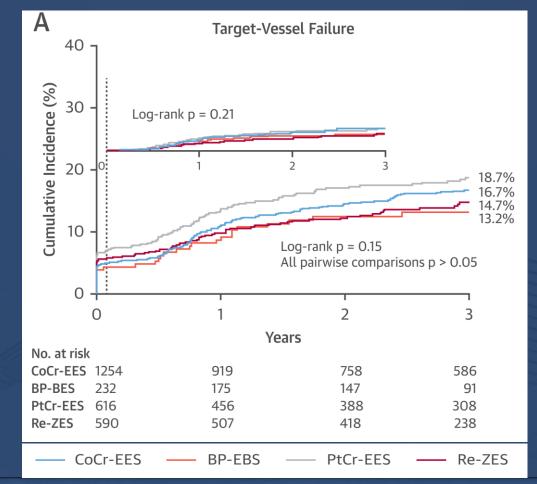


Park SJ et al. JACC Cardiovasc Interv., 2012


The ULMD Florence registry EES vs. PES

8TH COMPLEX PCI 2023 MAKE IT SIMPLEI: TECHNICAL FORUM A TO Z

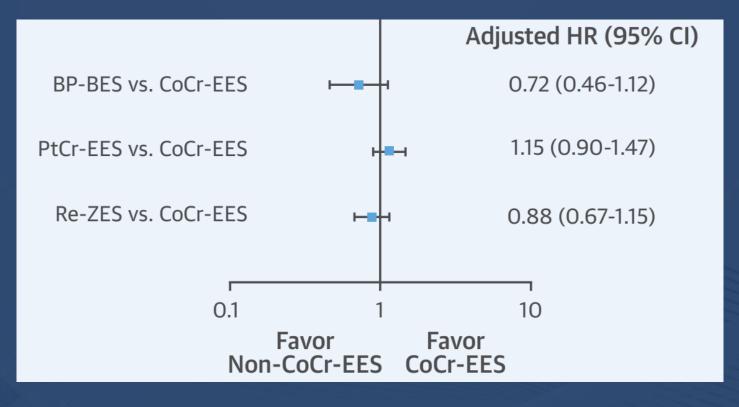
PRECOMBAT-3, 2 Year EES vs. SES



Unpublished Data. 2014

IRIS-MAIN Registry Comparison of 2nd generation DES

Target vessel failure: Cardiac death, Target vessel MI, or TVR



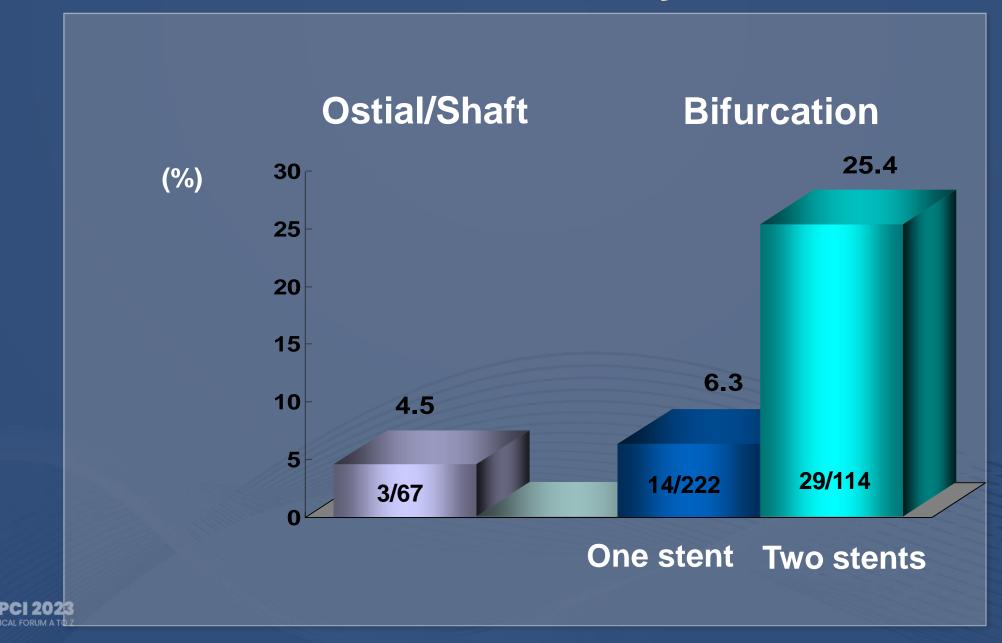
PH Lee et al. JACC 2018;71:832-41.

8™ COMPLEX PCI 2023 Make It simple: technical forum a to 2

IRIS-MAIN Registry Comparison of 2nd generation DES

Target vessel failure: Cardiac death, Target vessel MI, or TVR

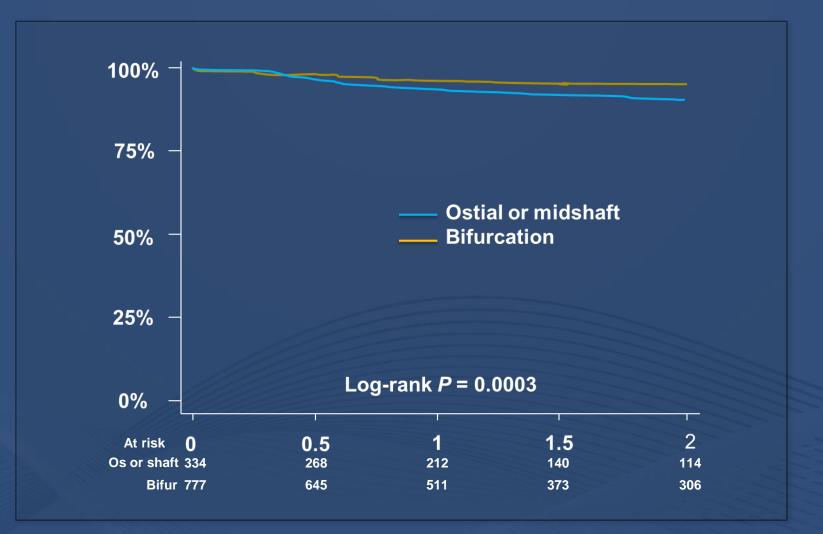
PH Lee et al. JACC 2018;71:832-41.



Distal bifurcation vs. Ostial / Shaft lesion

Restenosis at 2 year

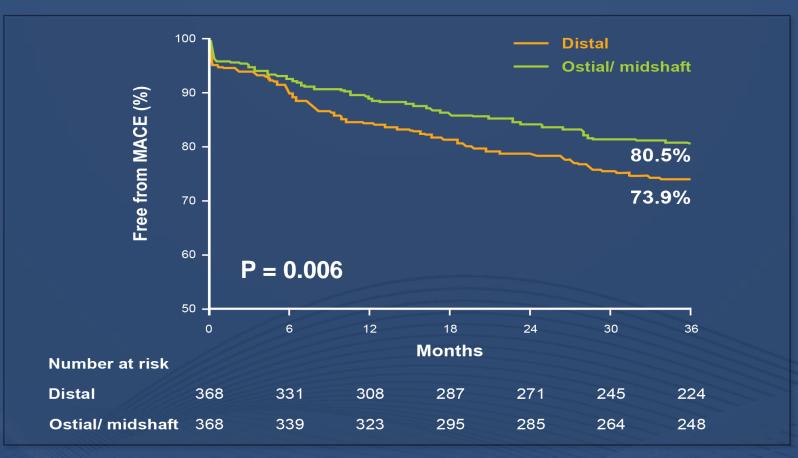
Lesion Specific Approach for LM Bifurcation



8TH COMPLEX PCI 2023 MAKE IT SIMPLEI; TECHNICAL FORUM A TO Z

Data from MAIN-COMPARE Registry

Bifurcation vs. Ostial / midshaft lesions TLR : Treated with DES


8TH COMPLEX PCI 2023 MAKE IT SIMPLEI: TECHNICAL FORUM A TO Z

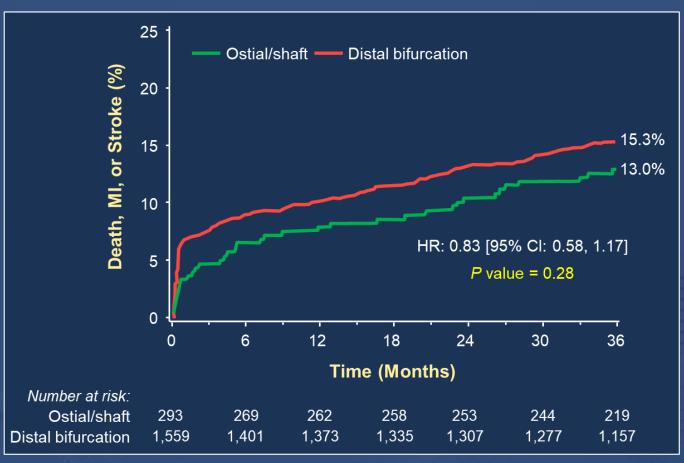
T. Palmerini et al. EHJ, 2009

Distal bifurcation vs. Ostial/midshaft

A subgroup of <u>DELTA</u> registry - propensity score-matched groups (Distal bifurcation N=1130, Ostial/mid-shaft N=482)

PCI for ostial/mid-shaft lesions was associated with better outcomes than distal bifurcation lesions in LM stenting.

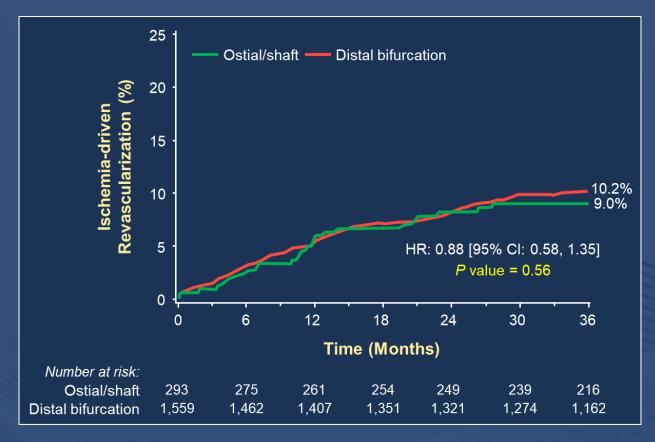
COMPLEX PCI 2023 MAKE IT SIMPLEI: TECHNICAL FORUM A TO


Naganuma et al. JACC Cardiovasc Interv, 2013

Distal bifurcation vs. Ostial/midshaft

Post-hoc analysis of EXCEL Trial (Distal bifurcation N=1559, Ostial/mid-shaft N=293)

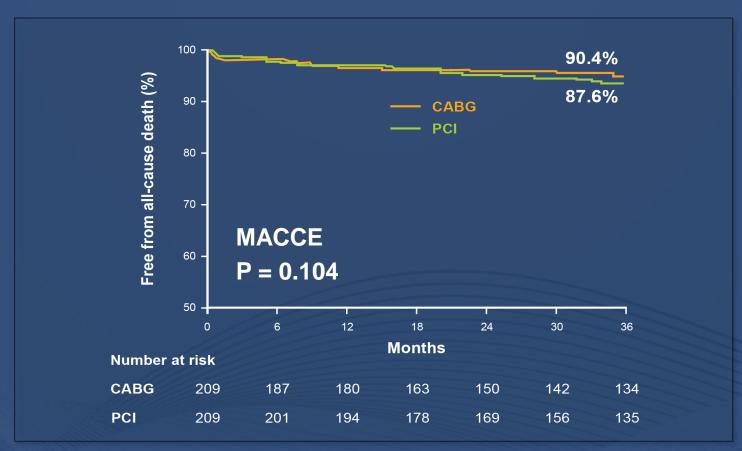
Primary Endpoint: Death, MI or Stroke



Distal bifurcation vs. Ostial/midshaft

Post-hoc analysis of EXCEL Trial (Distal bifurcation N=1559, Ostial/mid-shaft N=293)

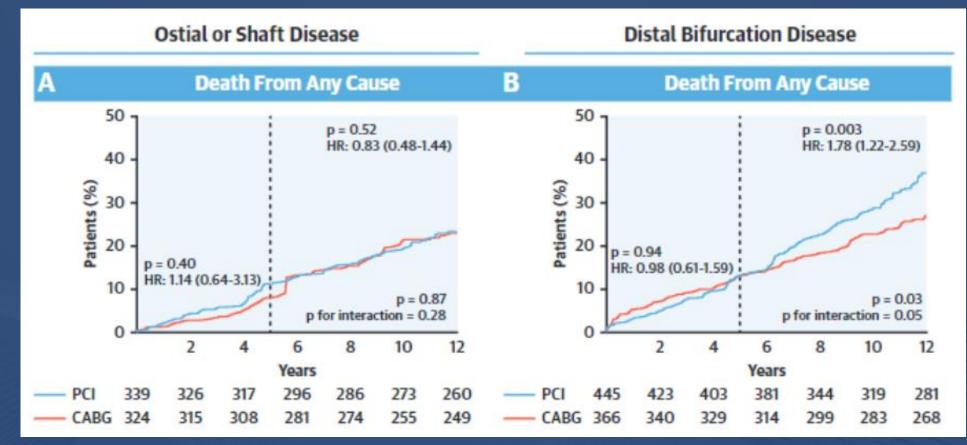
Ischemia-driven Revascularization



COMPLEX PCI 2023 MAKE IT SIMPLEI: TECHNICAL FORUM A TO Z

PCI vs. CABG for Ostial/Midshaft LM stenosis

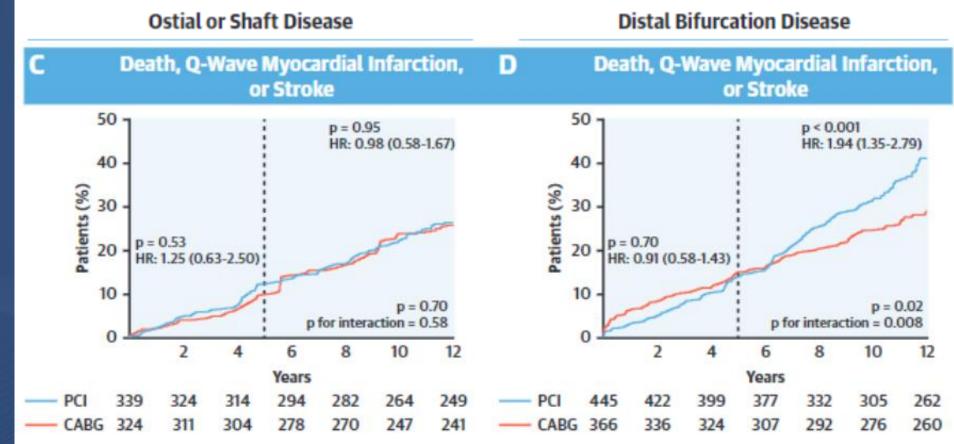
A subgroup of <u>DELTA</u> registry (PCI, 482; CABG, 374 patients) The results of propensity score-matched groups


PCI for ostial/midshaft lesions was associated with clinical outcomes comparable to those observed with CABG

8™ COMPLEX PCI 2023 MAKE IT SIMPLEI: TECHNICAL FORUM A TO Z

Naganuma et al. JACC Cardiovasc Interv, 2014

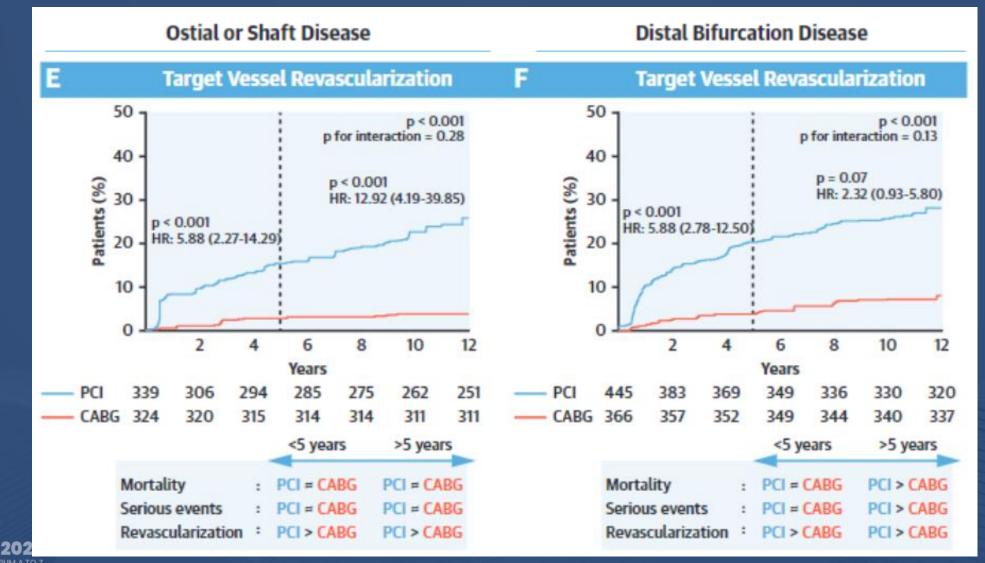
DES vs. CABG for LM Ostial/Shaft & Bifurcation MAIN-COMPARE registry



BIT COMPLEX PCI 2023 MAKE IT SIMPLEI: TECHNICAL FORUM A TO

Hyun et al, JACC Intv, 2020

DES vs. CABG for LM Ostial/Shaft & Bifurcation MAIN-COMPARE registry

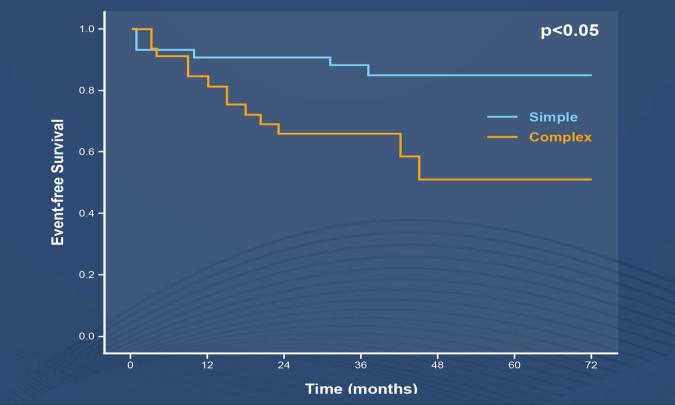


COMPLEX PCI 202

Hyun et al, JACC Intv, 2020

CVRF

DES vs. CABG for LM Ostial/Shaft & Bifurcation


Hyun et al, JACC Intv, 2020

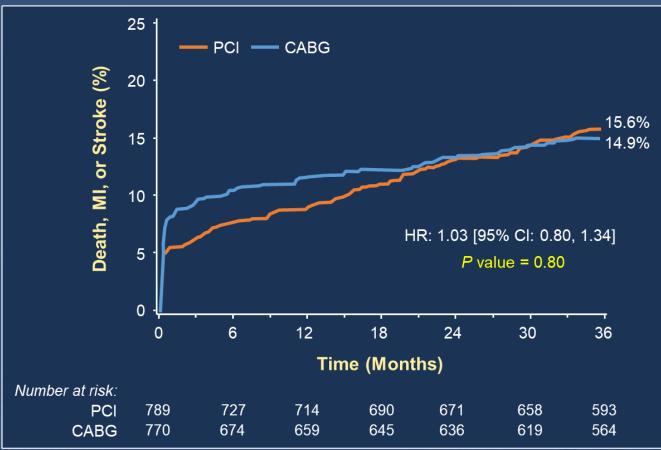
Distal LM Restenosis

UDLM-ISR subgroup of The <u>CORPAL</u> Registry (N=79)

Simple: POBA or in-stent implantation Complex: 1 additional stent implantation or 2-stenting technique

A simple strategy appeared to be a good treatment option, associated with a lower event rate at follow-up.

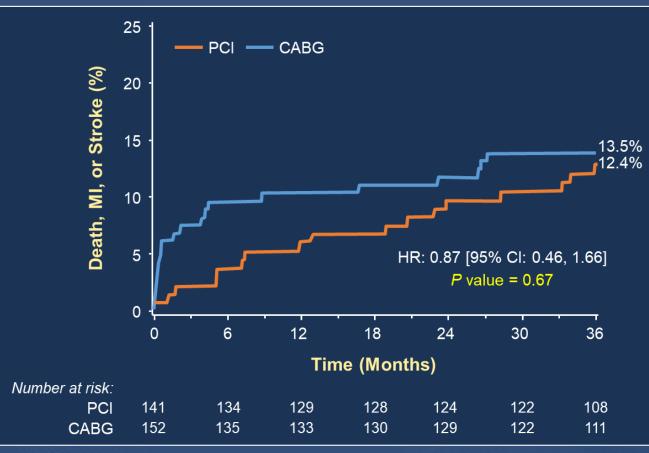
8™ COMPLEX PCI 2023 MAKE IT SIMPLEI: TECHNICAL FORUM A TO Z


Ojeda et al. JACC Cardiovasc Interv, 2014

PCI vs. CABG for Distal Bifurcation LM stenosis

Post-hoc analysis of EXCEL Trial (Distal bifurcation N=1559, Ostial/mid-shaft N=293)

Primary Endpoint: Death, MI or Stroke

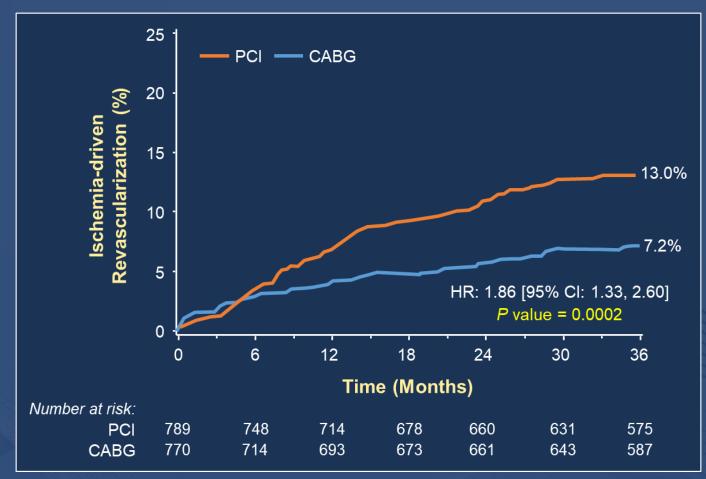


OMPLEX PCI 2023

PCI vs. CABG for Ostial/Midshaft LM stenosis

Post-hoc analysis of EXCEL Trial (Distal bifurcation N=1559, Ostial/mid-shaft N=293)

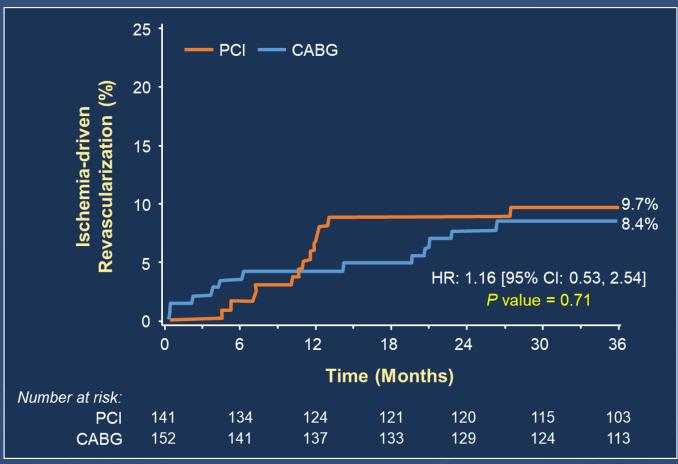
Primary Endpoint: Death, MI or Stroke



8TH COMPLEX PCI 2023 MAKE IT SIMPLEI; TECHNICAL FORUM A TO Z

PCI vs. CABG for Distal Bifurcation LM stenosis

Post-hoc analysis of EXCEL Trial (Distal bifurcation N=1559, Ostial/mid-shaft N=293) Ischemia-driven Revascularization



PCI vs. CABG for Ostial/Midshaft LM stenosis

Post-hoc analysis of EXCEL Trial (Distal bifurcation N=1559, Ostial/mid-shaft N=293)

Ischemia-driven Revascularization

Mortality after LM reintervention ISAR-LEFT-MAIN and ISAR-LEFT-MAIN2 registry

TABLE 2 Procedural Findings at the Index Procedure

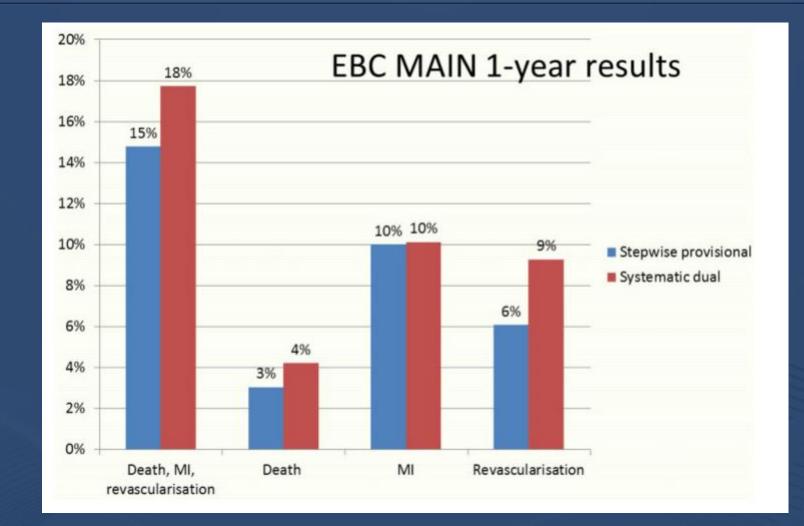
	Alive (n = 119)	Dead (n = 47)	p Value
Location of left main lesion Ostial Distal/bifurcation Body	8.4 (10/119) 81.5 (97/119) 10.1 (12/119)	8.5 (4/47) 78.7 (37/47) 12.8 (6/47)	0.88
Occluded right coronary artery	9.2 (11/119)	14.9 (7/47)	0.29
Trifurcation morphology	14.3 (17/119)	10.6 (5/47)	0.53
Stenting technique Single T-stenting Culotte stenting	45.4 (54/119) 10.1 (12/119) 44.5 (53/119)	57.4 (27/47) 4.3 (2/47) 38.3 (18/47)	0.26
Kissing balloon technique	55.5 (66/119)	34.0 (16/47)	0.01
Coronary artery dominance Left Right Balanced	8.4 (10/119) 82.4 (98/119) 9.2 (11/119)	10.6 (5/47) 74.5 (35/47) 14.9 (7/47)	0.49
Stent type			0.02
Sirolimus-eluting stent Zotarolimus-eluting stent Paclitaxel-eluting stent Everolimus-eluting stent	29.4 (35/119) 27.7 (33/119) 17.6 (21/119) 25.2 (30/119)	8.5 (4/47) 44.7 (21/47) 23.4 (11/47) 23.4 (11/47)	

TABLE 3 Mortality After Target Lesion RevascularizationAccording to Lesion Location and Revascularization Strategy

	Mortality at 3 Years	Mortality at 5 Years	p Value		
Lesion location			0.90		
Ostial	14.3 (2)	31.8 (4)			
Distal/bifurcation	20.6 (27)	29.3 (37)			
Body	23.7 (4)	36.4 (6)			
Underlying stenting technique Single T-stenting Culotte	20.3 (16) 14.9 (2) 21.5 (15)	35.5 (27) 14.9 (2) 26.9 (18)	0.30		
Revascularization type CABG	18.1 (3)	24.4 (4)	0.90		
PTCA	24.1 (19)	31.5 (24)			
Stenting	16.5 (11)	29.9 (19)			
Values are 9/ by Vanlag Meier estimate (a)					

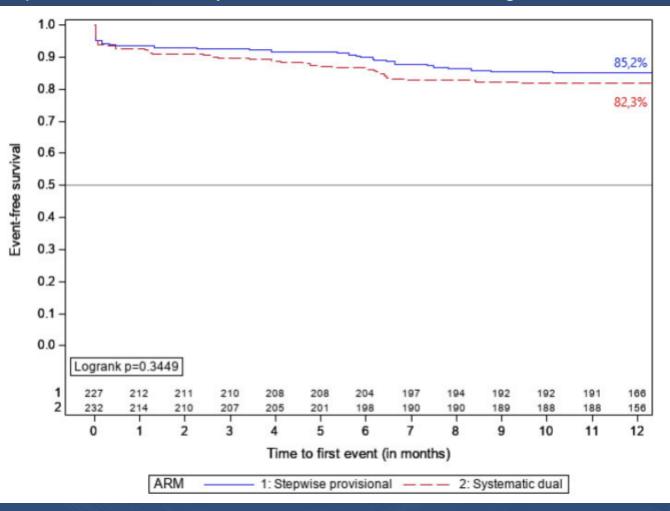
Values are % by Kaplan-Meier estimate (n).

Wiebe et al., JACC Cardiovasc Interv, 2020


HNICAL FORUM A TO 7

Simple cross vs. Two-stent technique

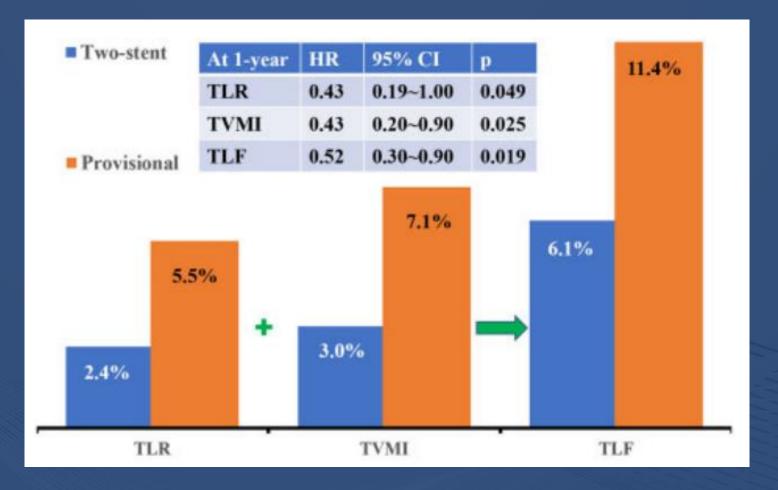
EBC MAIN trial *LM bifurcation: 1 vs. 2 stent tech.*



D. Hildick-Smith et al. EHJ, 2021, 24 ; 3829-3839

EBC MAIN trial *LM bifurcation: 1 vs. 2 stent tech.*

Primary Endpoint : a composite of death, myocardial infarction, and target lesion revascularization at 12month

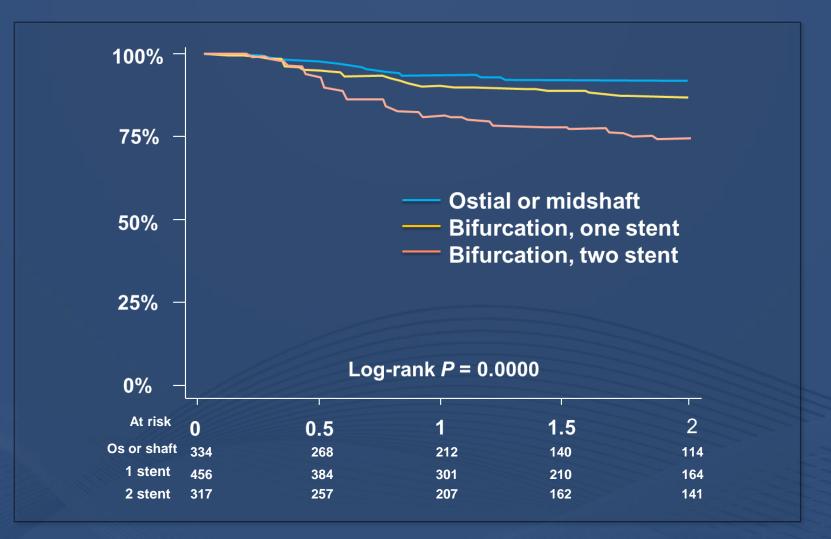


COMPLEX PCI 2023 MAKE IT SIMPLEI; TECHNICAL FORUM A TO Z

D. Hildick-Smith et al. EHJ, 2021, 24 ; 3829-3839

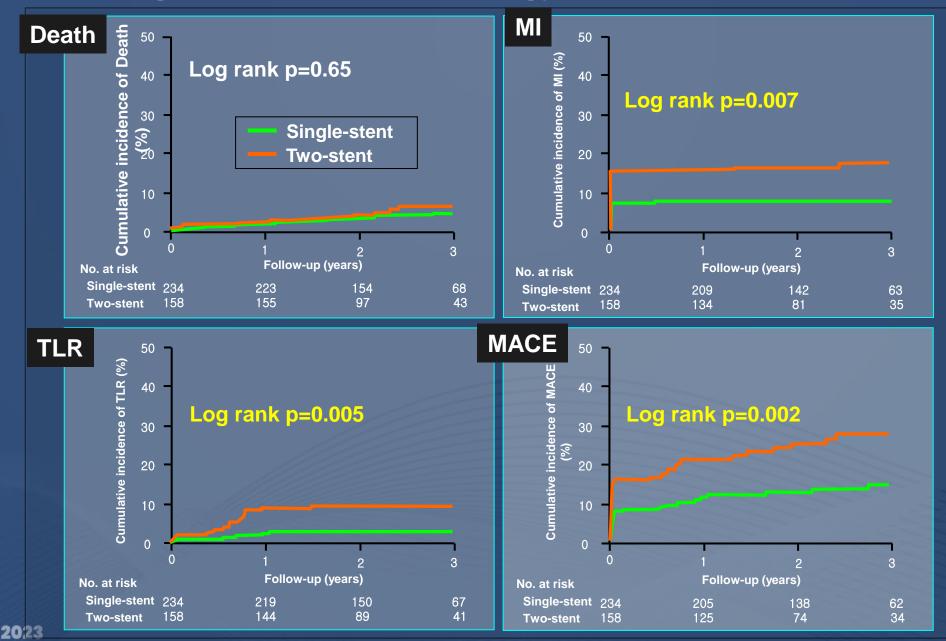
DEFINITION II trial *LM bifurcation: Two stent vs. provisional stenting*

Primary Endpoint : target lesion failure, target lesion revascularization, target vessel myocardial infarction



Jun-Jie Zhang et al. EHJ, 2020, 41 ; 2523-2536

Ostial vs. 1 stent vs. 2 stent TLR :Treated with DES



8TH COMPLEX PCI 2023 MAKE IT SIMPLEI: TECHNICAL FORUM A TO Z

T. Palmerini et al. EHJ, 2009

Single- vs. Two-Stent Strategy from MAINCOMPARE

Catheter Cardiovasc Interv., 2011

MAKE IT SIMPLEI: TECHNICAL FORUM A TO Z

COBIS Registry II *LM bifurcation: 1 vs. 2 stent tech.*

Target lesion failure : cardiac death, MI, and TLR

8TH COMPLEX PCI 2023 MAKE IT SIMPLEI; TECHNICAL FORUM A TO Z

Song YB et al. JACC: Cardiovasc interv, 2014

IVUS-guided, Lesion-specific

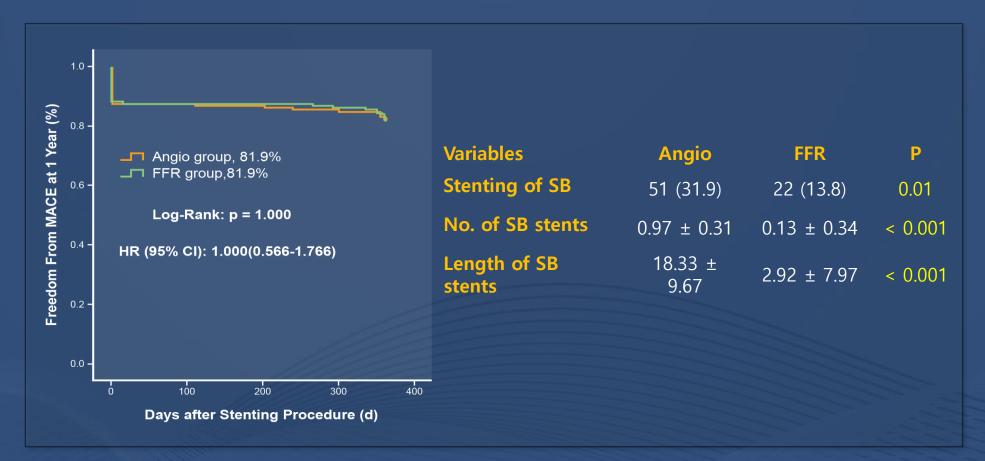
Single stent	 Normal ostial LCX with MEDINA 1.1.0. or 1.0.0. Small LCX with < 2.5 mm in diameter Diminutive LCX Normal or focal disease in distal LCX
Two stent	 Diseased LCX with MEDINA 1.1.1., 1.0.1., or 0.1.1 Large LCX with ≥ 2.5 mm in diameter Diseased left dominant coronary system Concomitant diffuse disease in distal LCX

Park SJ, Kim YH. Colombo A, Issam D. Moussa et al. Textbook of Bifurcation Stenting

Provisional vs. 2-stent technique for Simple and Complex Bifurcation Lesions - The DEFINITION Study

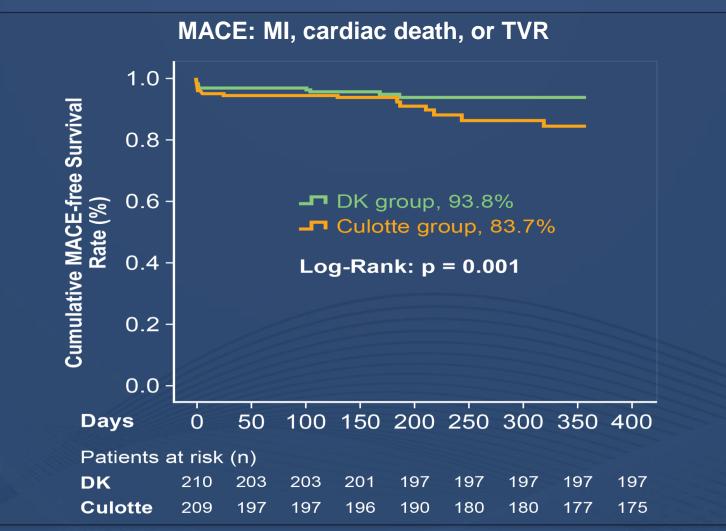
Adjusted HR with 2-stent technique

	Simple	Complex
In-hospital		
МІ	0.76 (0.45–1.28)	0.58 (0.35–0.94)
Cardiac death	—	0.53 (0.13–2.12)
TLR	1.66 (0.41–1.66)	—
MACE	0.68 (0.40–1.13)	0.58 (0.35–0.94)
Stent thrombosis	6.68 (1.67–26.80)	—
At 1 year		
МІ	0.68 (0.40–1.13)	0.64 (0.40–1.03)
Cardiac death	0.95 (0.38–2.34)	0.52 (0.28–0.97)
TLR	1.78 (1.16–2.74)	1.07 (0.65–1.75)
MACE	1.03 (0.75–1.42)	0.79 (0.57–1.08)
Stent thrombosis	1.66 (0.62–4.45)	1.06 (0.42–1.69)


2-stent technique is still needed for complex bifurcation lesions

Chen et al. JACC: Cardiovasc Interv, 2014

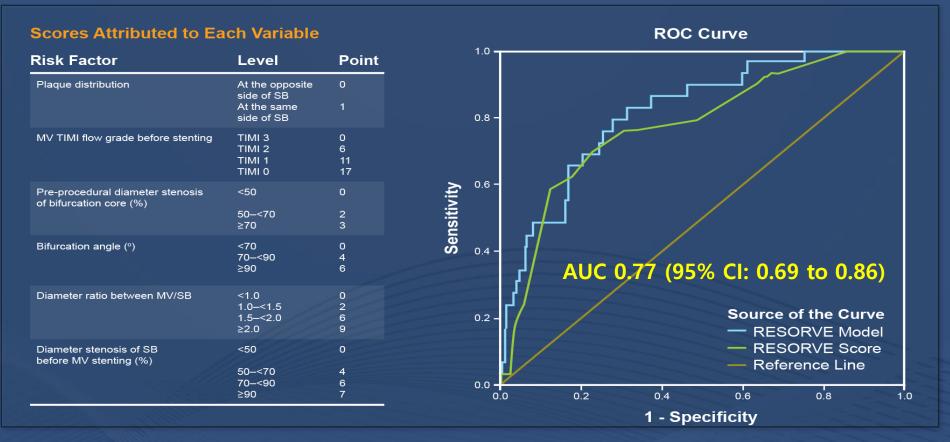
FFR- vs. Angio-guided Provisional Stenting The Randomized DKCRUSH-VI Trial (160 patients with true bifurcation lesion in each group)


FFR-guided provisional stenting showed the similar outcomes with fewer stents

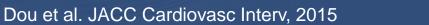
Chen et al. JACC Cardiovasc Interv, 2014

DKCRUSH vs. Culotte for LM-bifurcation

8TH COMPLEX PCI 2023 MAKE IT SIMPLEI: TECHNICAL FORUM A TO Z


Shao-Liang Chen et al. JACC, 2013

Risk Prediction of SB Occlusion

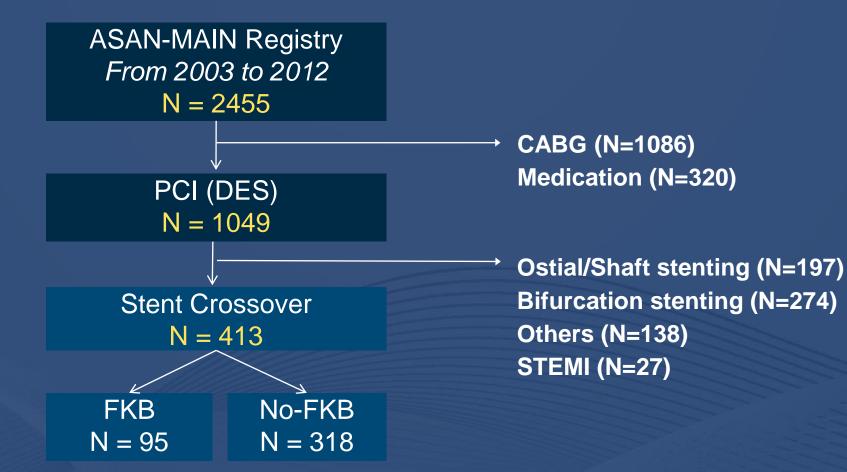

The RESOLVE Score System

: a model built from 1545 Chinese patients with bifurcation

The RESOLVE score system can help identify patients at risk for SB occlusion during bifurcation stenting.

Effect of SB Predilation Before Provisional Stenting

A randomized study enrolling 372 patients with true bifurcation (SB predilation + vs. SB predilation -)


Predilation of the SB resulted in improved TIMI flow after MB stenting, not hindering SB rewiring.

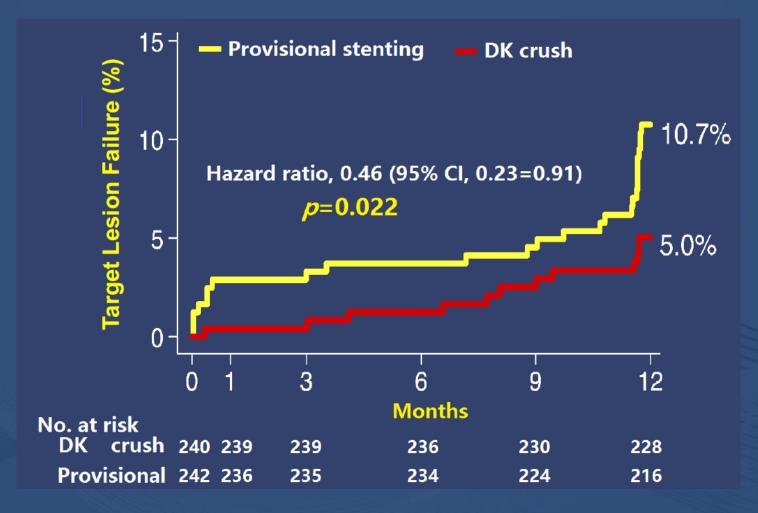
Pan et al. Am Heart J, 2014

With vs. Without Routine Kissing Balloon Inflation (FKB)

With vs. Without Routine Kissing Balloon Inflation (FKB) 2- year Clinical Outcomes

	FKB (N=95)	Non-FKB (N=318)	Adjusted HR (95% CI)	P value
Death	4 (4.6%)*	12 (3.9%)	1.03 (0.28-3.82)	0.97
Death or MI	4 (4.6%)	13 (4.2%)	0.95 (0.26-3.51)	0.96
TVR	7 (8.1%)	14 (4.8%)	1.12 (0.40-3.11)	0.83
LM-TLR	7 (8.1%)	13 (4.4%)	1.32 (0.46-3.75)	0.60
Definite ST	0	0	NA	NA
MACE [#]	11 (12.5%)	26 (8.5%)	1.10 (0.49-2.49)	0.82

adjusted for age, DM, clinical presentation, stent No., pre- and post-stenting LCX DS * derived from Kaplan-Meier estimate # composite of death, MI, or LM TLR


8[™] COMPLEX PCI 2023 MAKE IT SIMPLEI: TECHNICAL FORUM A TO Z

AMC Data, 2014

DKCRUSH vs. Provisional stenting for LM distal bifurcation

Primary Endpoint: TLF (Cardiac death, TVMI, or TLR)

DKCRUSH vs. Provisional stenting for LM distal bifurcation

Target Lesion Failure at 1-Year Subgroup analysis

	DK crush	(N=240) tal patients		nal Sten total pat	ing (N=242)		P Value for
-	no.	%	no.	101al pai		Hazard Ratio (95%)	Interaction
		/0		/0	l I		interaction
Age (yea		0.1	10/105	10.0			0.075
<70	10/164	6.1	18/165	10.9		0.56 (0.27, 1.17)	0.375
≥70	2/76	1.4	8/77	10.4		0.25 (0.06, 1.15)	
Gender							
Female	3/41	7.3	9/54	16.7	_	0.44 (0.13, 1.52)	0.858
Male	9/199	4.5	17/188	9.0		0.50 (0.23, 1.09)	
Diabete	S						
No	9/171	5.3	15/180	8.3	—++	0.63 (0.28, 1.40)	0.372
Yes	3/69	4.3	11/62	17.7	_	0.25 (0.07, 0.84)	
Complex	x bifurcatio	on lesions					
No	6/154	3.9	14/176	8.0	—•+	0.49 (0.19, 1.24)	0.652
Yes	6/86	7.0	12/66	18.2		0.38 (0.15, 0.97)	
Distal ar	ngle						
<70	7/158	4.4	14/169	8.3	—————— ——————————————————————————————	0.53 (0.22, 1.29)	0.596
≥70	5/82	6.1	12/73	16.4	_	0.37 (0.14, 1.00)	
SYNTA)	< score						
≤32	8/149	5.4	16/154	10.4	+	0.52 (0.23, 1.17)	0.697
>32	4/91	4.4	10/88	11.4	+	0.39 (0.13, 1.19)	
NERS s	core						
<19	9/125	7.2	16/141	11.3		0.64 (0.30, 1.41)	0.264
≥19	3/115	2.6	10/101	9.9		0.26 (0.07, 0.93)	

8TH COMPLEX PCI 2023 MAKE IT SIMPLEI: TECHNICAL FORUM A TO Z

Favors DK crush Favors Provisional stenting

Bifurcation technique

Bifurcation Coronary Disease

- 15~20% of PCI patients
- DES enhanced success rate, but have not resolved completely
- Dependable strategy not established
 - Rare studies evaluating anatomical intricacies
 - Lack of large randomized trials
 - Many anatomical variants
 - → Single technique can't fit all

Difficulties of Bifurcation PCI

- **Risk of periprocedural complication**
- **Relatively high restenosis**
- Not all lesions are the same
 - Size of vessels (Meaningful SB size \geq 2.25mm)
 - Variable plaque distribution
 - Extent of SB disease
 - Variable angulation

Higher risk of stent thrombosis

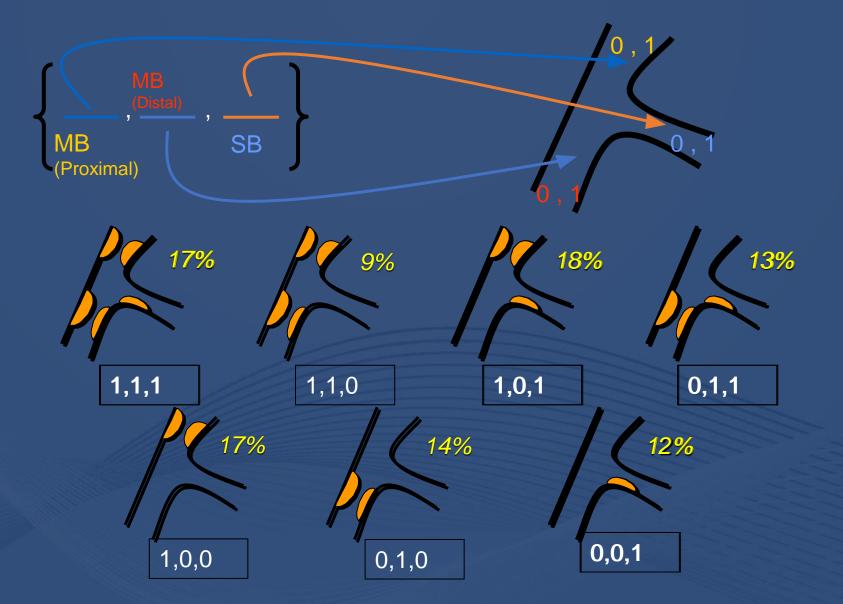
PCI techniques are mainly based on personal experiences from skilled operators

Factors to be considered for PCI strategy

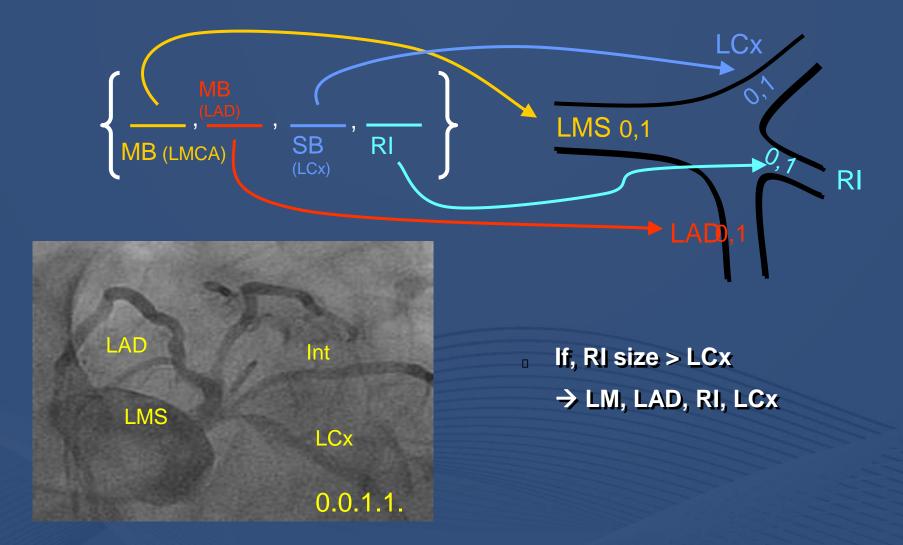
Anatomical factors

- LMCA bifurcation
- Location of plaque (Anatomical classification)
- Plaque or carina shift
- Angle btw SB and MB
- Dynamic change in bifurcation anatomy
- Modalities for objective anatomical evaluation
- QCA, IVUS, FFR

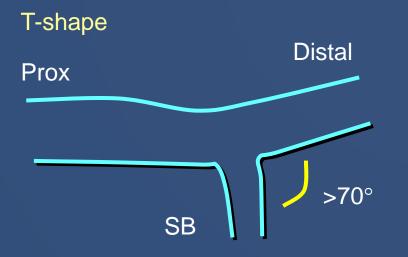
Selection of devices and strategies

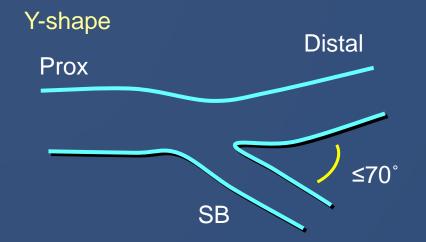

- DES vs. BMS
- Single vs. Double stent techniques
- Kissing balloon or not

COMPLEX PCI 2023 MAKE IT SIMPLE: TECHNICAL FORUM A TO Z

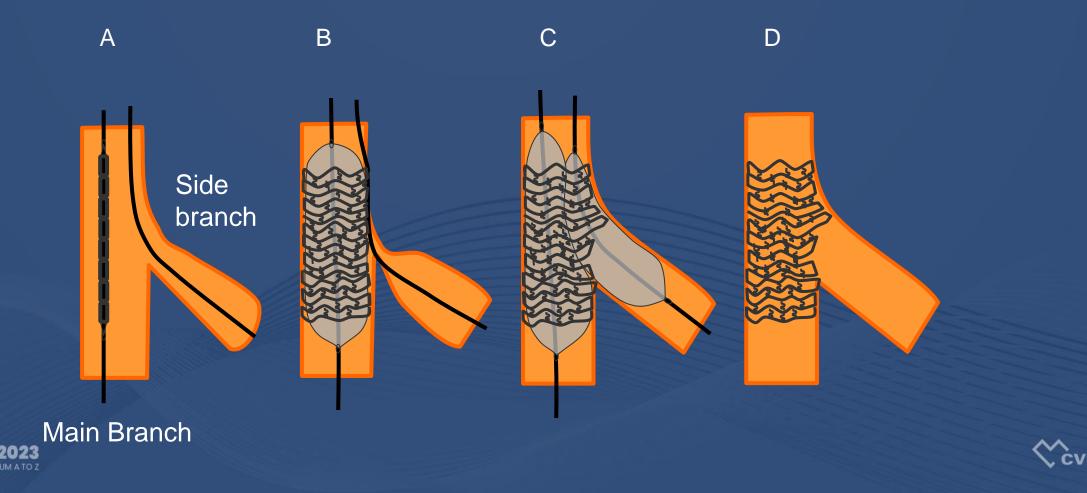

Medina Classification

8™ COMPLEX PCI 2023 MAKE IT SIMPLEI: TECHNICAL FORUM A TO Z

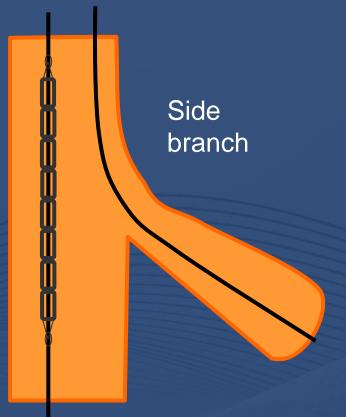

Trifurcation



Angulation

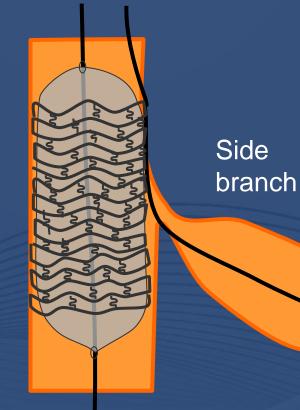

Difficult SB access
 Less plaque shifting
 T-stenting better

Easier SB access
 More plaque shifting
 Cullotte or Crush better



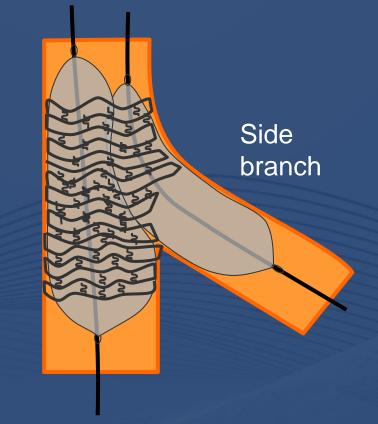
Normal or diminutive side branch ostium

A. Wire both branches and predilate if needed



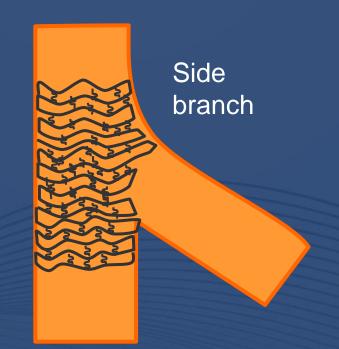
Main branch

B. Stent the MB leaving a wire in the SB



Main branch

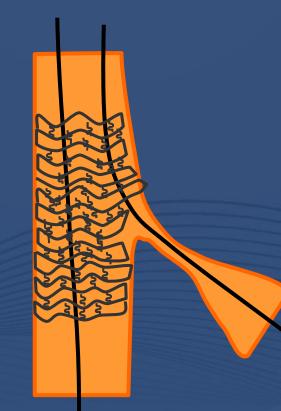
C. Rewire the SB passing through the strut of the MB stent, remove the jailed wire, dilate toward SB, and perform FKB inflation



Main branch


D. Final result

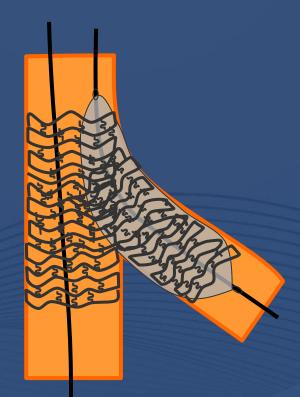
Main vessel


Good SB scaffolding with angles >70°

Protrusion of SB stent into the MB

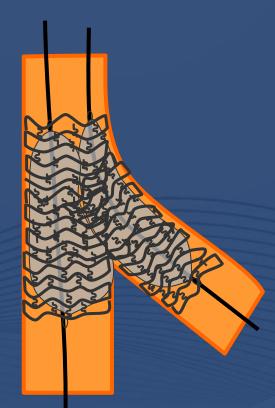
In cases with significant narrowing of side branch after main branch stenting

A. Jailed SB after MB stenting



In cases with significant narrowing of side branch after main branch stenting

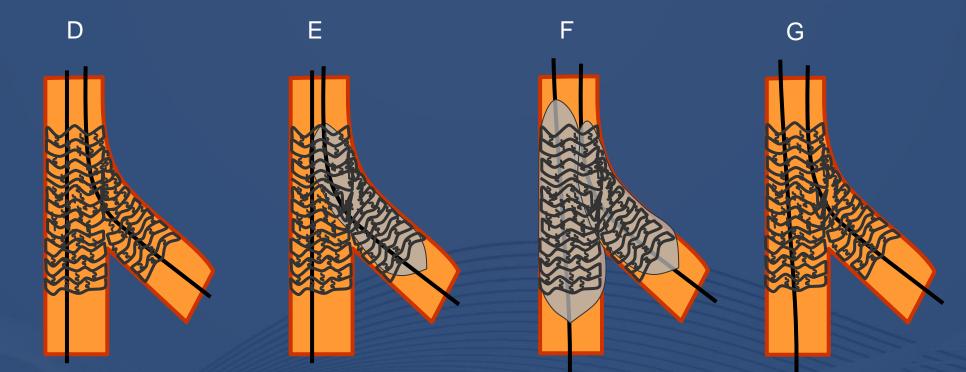
B. SB stenting with minimal protrusion



In cases with significant narrowing of side branch after main branch stenting

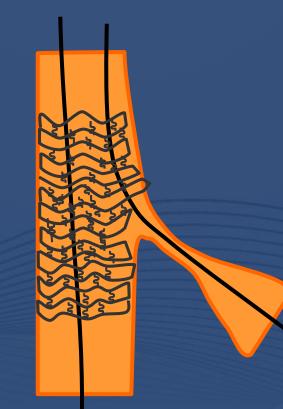
C. Final kissing is necessary

In cases with significant narrowing of side branch after main branch stenting


D. Slightly protruded stent strut to MB

Final kissing balloon dilatation is mandatory

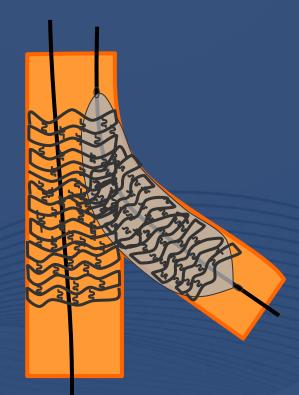
Re-advancement of wire into the side branch


Opening of the side branch ostium

Final kissing balloon inflation

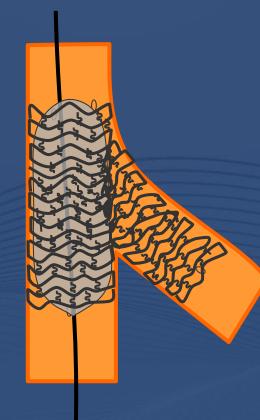
Final kissing balloon dilatation is mandatory

A. Jailed SB after MB stenting



Final kissing balloon dilatation is mandatory

B. SB stenting with minimal protrusion

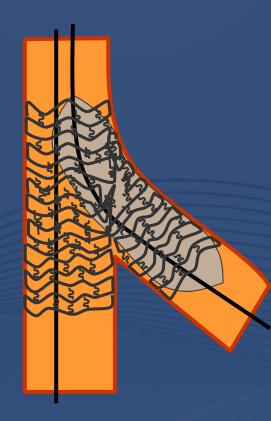


Final kissing balloon dilatation is mandatory

C. Remove SB balloon & wire, and inflate MB at high pressure to crush SB stent

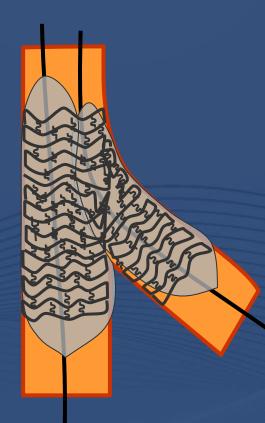
Final kissing balloon dilatation is mandatory

D. Re-advancement of wire into the side branch



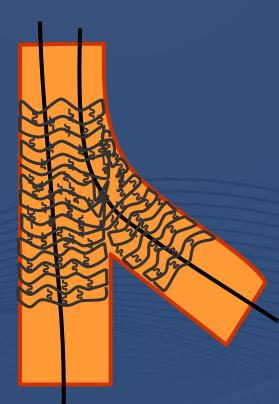
Final kissing balloon dilatation is mandatory

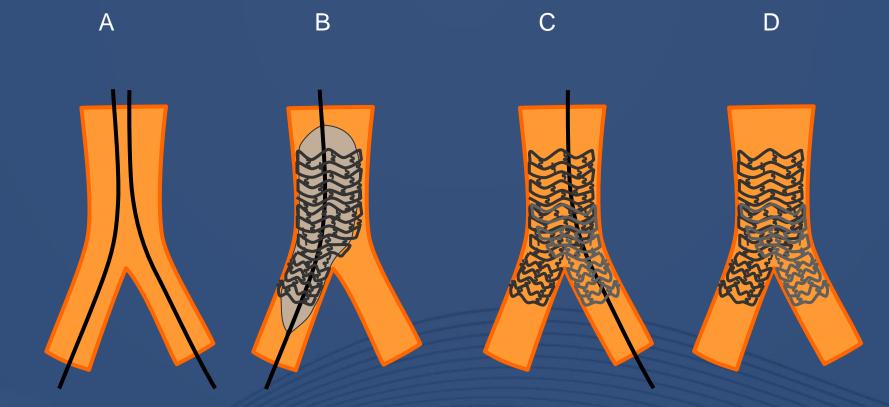
E. Opening of the side branch ostium



Final kissing balloon dilatation is mandatory

F. Final kissing balloon inflation

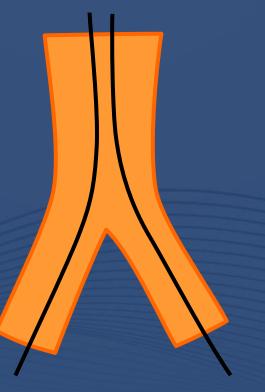



Final kissing balloon dilatation is mandatory

G. Final result

Advantages

Compatible with 6-Fr guider Independent of bifurcation angle Predictable scaffolding

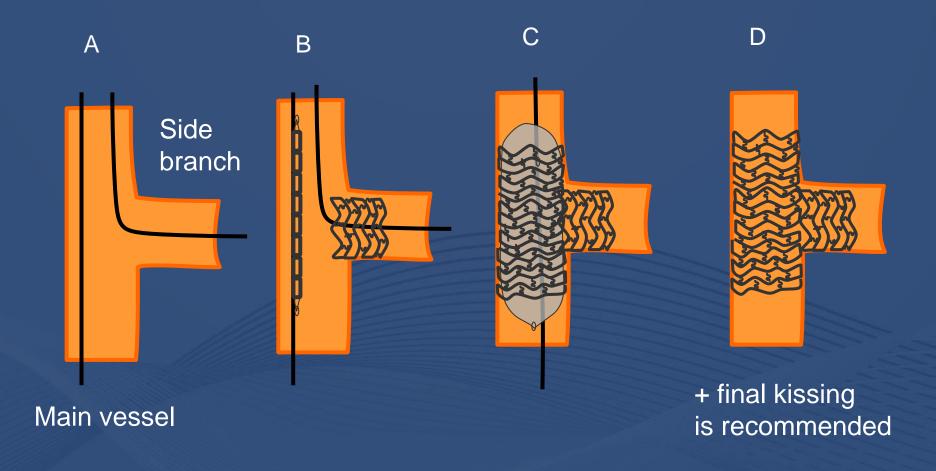

Disadvantages

Leaves multiple layers of strut Potential acute closure of MB

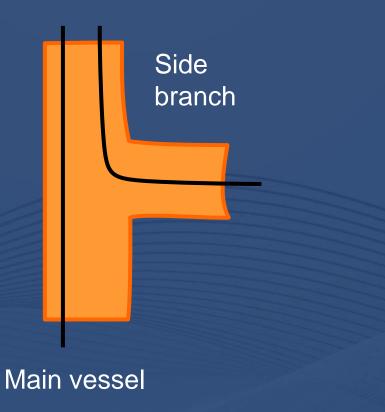
A. Wire both branches and predilate if needed

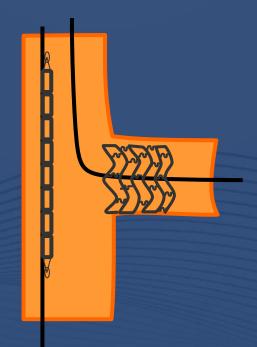
B. Deploy a stent in the more angulated branch (SB)

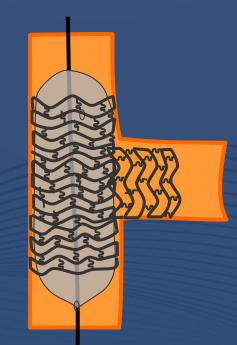

C. Rewire unstented branch, dilate the stent to unjail the MB, and expand a second stent into the unstented MB

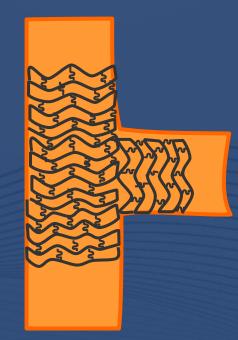


D. Final result after final kissing balloon

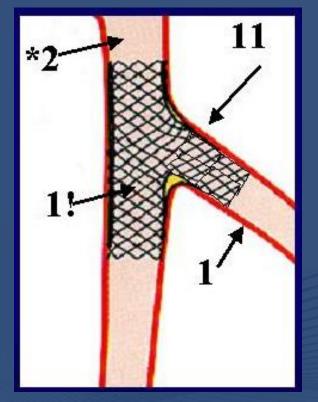



A. Wire both branches and predilate if needed


B. SB stent deployed at nominal pressure

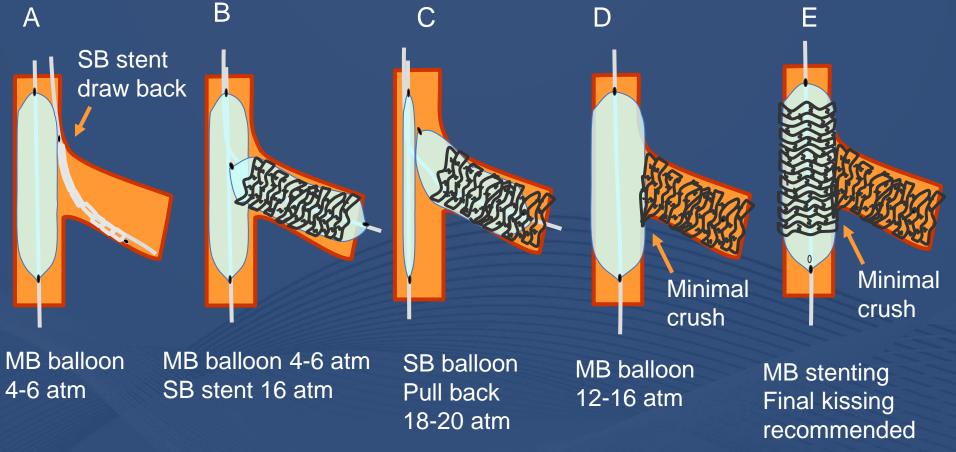

C. Remove balloon and wire from SB, And deploy the MB stent at high pressure

D. Rewire the SB and high-pressure dilatation, then final kissing inflation is recommended

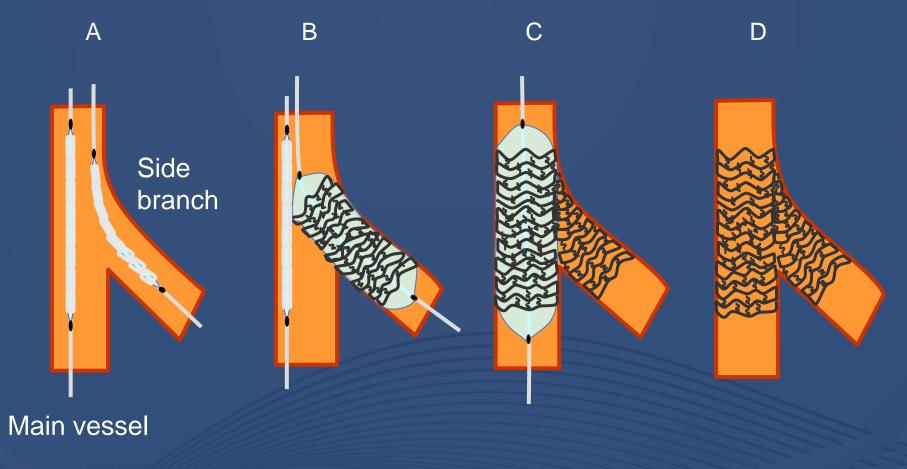


Limitation of Modified T Stenting

Restenosis site of T stenting in SIRIUS bifurcation


Potential gap without enough drug diffusion

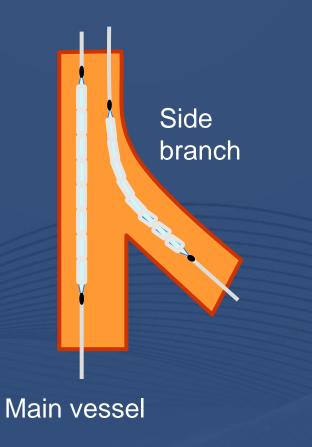
To prevent potential gap at the ostial side branch, the first stent should cover the entire surface of the side branch.



Modified T-Stenting For Proper Ostial positioning

Crush Technique

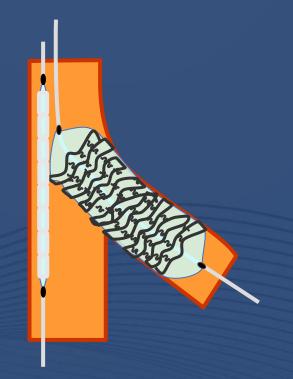
Advantages


Relatively simple Low risk of SB occlusion Good coverage of SB ostium Disadvantages

Difficult FKI Requires 7 or 8-Fr guider Leaves multiple layers of strut

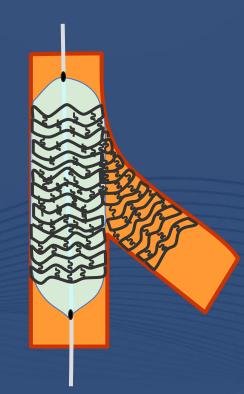
Crush Technique

A. Advance 2 stents



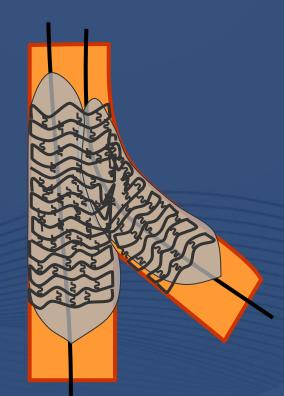
Crush Technique

B. Deploy the SB stent



Crush Technique

C. Deploy the main stent, then rewire SB and perform high-pressure dilatation



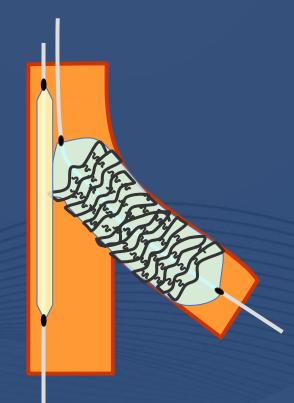
Crush Technique

D. Perform final kissing inflation

Crush Technique

D. Final result

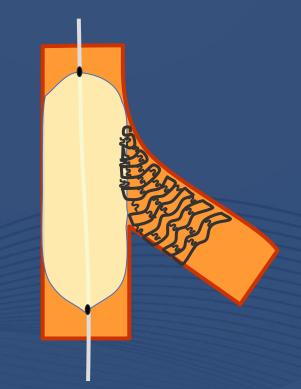
Performed with 6~7Fr guiding catheter



Minimizes multi-layers of struts Good scaffolding at SB ostium **OMPLEX PCI 20 F**acilitates FKI KEIT SIMPLE: TECHNICAL FORUM A Compatible with 6-Fr guider

Performed with 6~7Fr guiding catheter

A. Deploy the SB stent \pm MB balloon backup

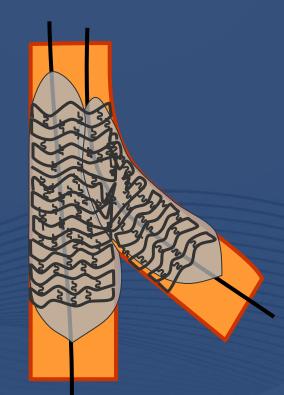


Performed with 6~7Fr guiding catheter

B. Crush SB stent

Performed with 6~7Fr guiding catheter

C. Deploy stent in MB, then rewire SB and perform high-pressure dilatation



Performed with 6~7Fr guiding catheter

E. Perform final kissing inflation

Performed with 6~7Fr guiding catheter

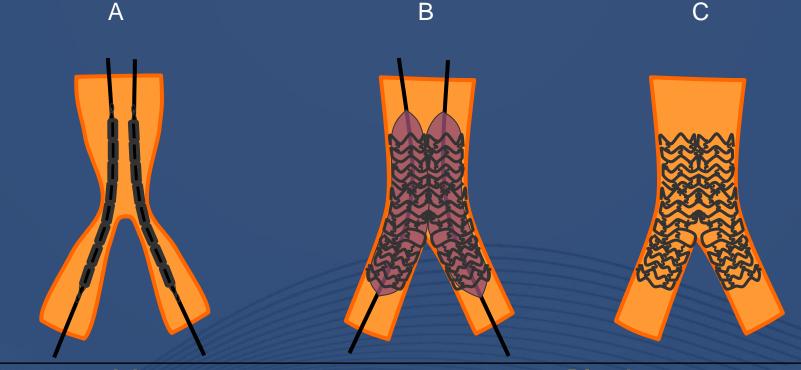
F. Final result

V Stenting

- Bifurcation without stenosis proximal to the bifurcation
- Short LM
- Less angle

A. Position 2 parallel stents covering both branches with a slight protrusion into the proximal MB

B. Deploy 2 stents individually (or simultaneously)


C. Perform high-pressure sequential single stent postdilation, Then medium pressure final kissing inflation

- Large proximal reference
- Bifurcation with stenosis proximal to the bifurcation

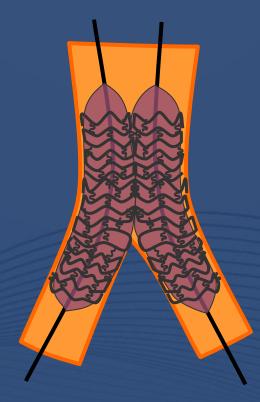
Advantages

No risk of occlusion for both branches No need to re-cross any stent Technically easy and quick

rantages

Disadvantages

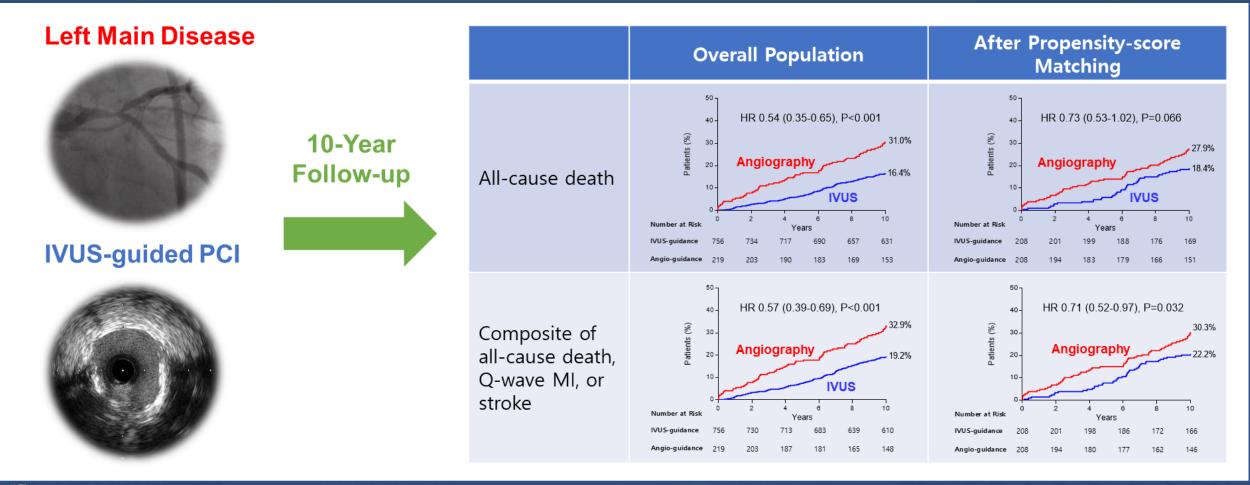
Requires 7- or 8-Fr guider Leaves long metallic carina Over-dilatation in proximal MB Diaphragmatic membrane formation Difficulty in repeat revascularization



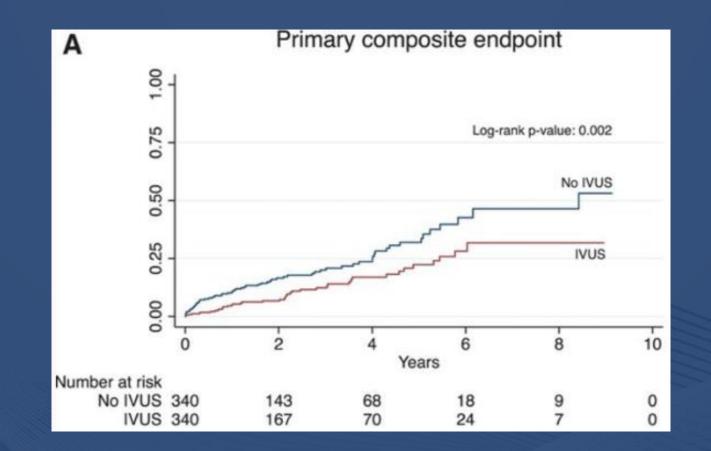
A. Position 2 parallel stents covering both branches with a long double barrel protrusion into the proximal MB

B. Deploy 2 stents

C. Perform final kissing inflation resulting a new metallic carina

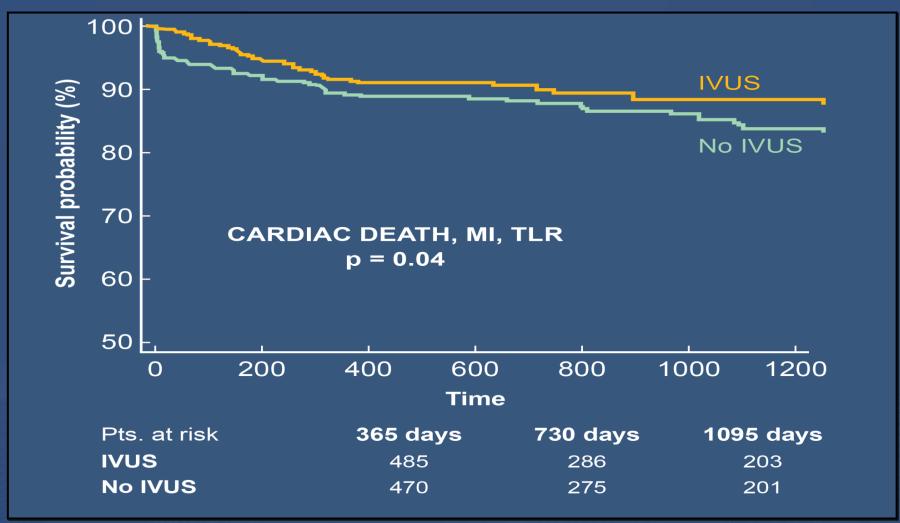


IVUS in LM disease


IVUS Use was Associated with Better 10-yr Outcomes after LM PCI MAIN-COMPARE Registry

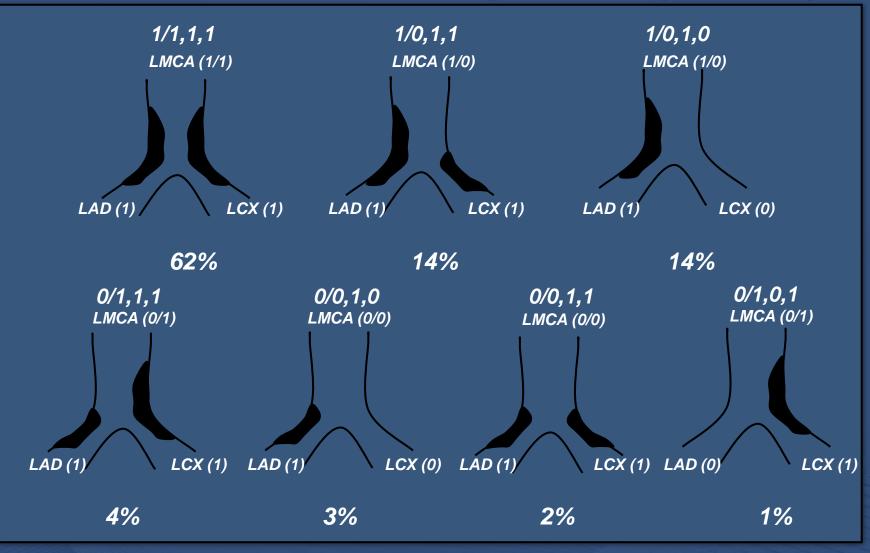
Kang DY et al, Circ Cardiovasc Interv. 2021.

IVUS guidance associated with better outcome in LMCA stenting compared with angiography guidance alone SCAAR Registry



Pontus Andell et al, Circ Cardiovasc Interv. 2017;10;e004813

Pooled analysis :ESTROFA-LM, RENACIMIENTO, Bellvitge, Valdecilla Effectiveness of IVUS on LM PCI



8™ COMPLEX PCI 2023 MAKE IT SIMPLEI; TECHNICAL FORUM A TO Z

De la Torre Hernandez et al. JACC: cardiovasc interv 2014;7:244-54

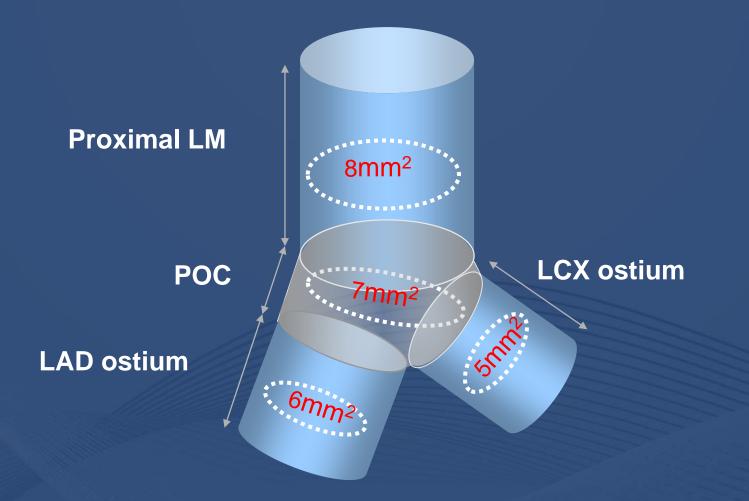
Plaque Distribution by IVUS (n=140)

In 90% plaque extends from LMCA-LAD

Oviedo C et al. Circ Cardiovasc Interv 2010;3:105-12.

Plaque Distribution by IVUS (n=82)

DLM POC LAD LCX	N. (%)	LAD ostium, MLA (mm²)	POC, MLA (mm²)	DLM, MLA (mm ²)	LCX ostium, MLA (mm²)
	5 (6%)	4.4±2.0	9.6±4.4	8.1±4.7	3.4±1.6
	26 (32%)	4.2±2.8	5.3±2.6	4.6±1.5	3.9±2.1
	12 (15%)	2.6±1.3	4.5±1.6	4.5±2.1	3.3±2.0
	9 (11%)		5.6±3.3	5.7±3.8	7.6±3.6
	9 (11%)	3.2±1.4	6.1±2.0	4.8±2.5	3.9±1.4
	4 (5%)	3.4±1.9	5.2±1.9	5.8±4.7	3.9±2.0
	4 (5%)	2.8±0.7	5.1±2.1	5.1±2.2	6.6±1.7
	5 (6%)	3.4±1.9	5.2±2.6	5.1±3.8	4.6±2.1


In all cases, the LM disease extended into LAD and LCX continuously.

COMPLEX PCI 2023 MAKE IT SIMPLEI: TECHNICAL FORUM A TO Z

Kang et al, Catheterization and Cardiovascular Interventions. 2011.

Optimal MSA on a segmental basis

Kang et al. Circ Cardiovasc Interv 2011 2011;4:1168-74

Cut-off for Predicting LM FFR<0.75 : LM MLA 6.0mm²

- Sum of lumen areas of two daughter vessels (Each of LAD and LCx should be 4.0mm²) = 150% of the parent LM
- Murray's Law $(LM r^3 = LAD r^3 + LCx r^3)$

8TH COMPLEX PCI 2023 MAKE IT SIMPLEI; TECHNICAL FORUM A TO Z

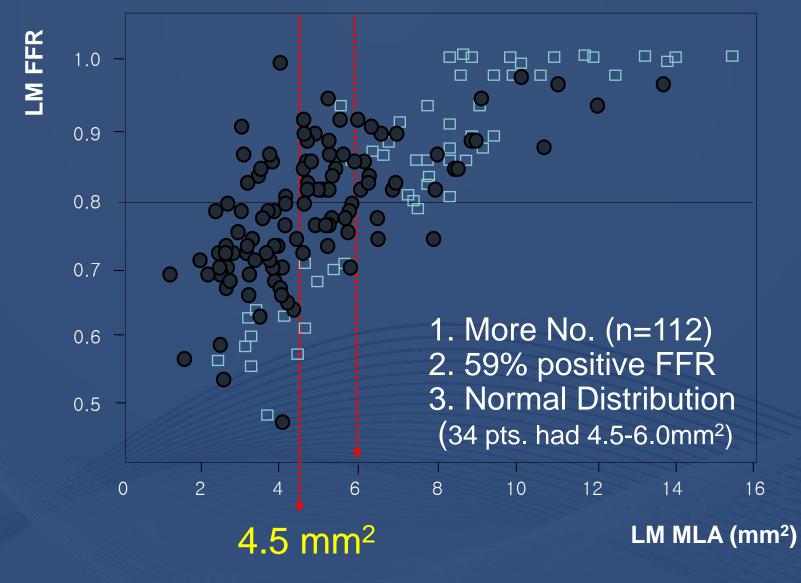
Jasti et al. Circulation 2004;110:2831-6

Geometric Abstraction

Old MLA cut-off 6.0mm² was obtained from *Murray's law* considering an MLA 4.0mm² as ischemic threshold of both LAD and LCX

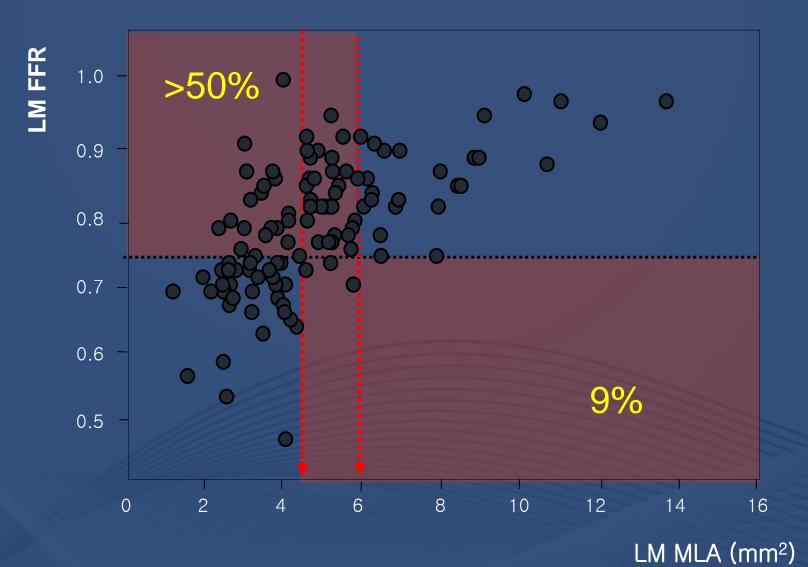
LM 6.0mm ²	LAD	LCX	LM (Murray's)
	4.0	4.0	6.35
LAD LCX	4.0	3.9	6.27
4.0 mm^2 4.0 mm^2	4.0	3.8	6.19
4.0////////////////////////////////////	4.0	3.7	6.11
	4.0	3.6	6.04
	4.0	3.5	5.96

De La Torre Hernandez et al. JACC 2011;58:351-8 Jasti et al. Circulation 2004;110:2831-6


False Assumption... The used cut-off 4.0mm² is too Big!

LAD	LCX	LM (Murray's)	 Finet's Law HK's Law Murray's Law 10
3.0	3.0	4.76	8 - 8 -
3.0	2.9	4.68	6.0 < 6
3.0	2.8	4.60	4.5<
3.0	2.7	4.53	
3.0	2.6	4.45	2
3.0	2.5	4.37	2.0 2.5 3.0 3.5 4.0 4.5 5.0 SB MLA (mm ²)

AMC Data (n=112)

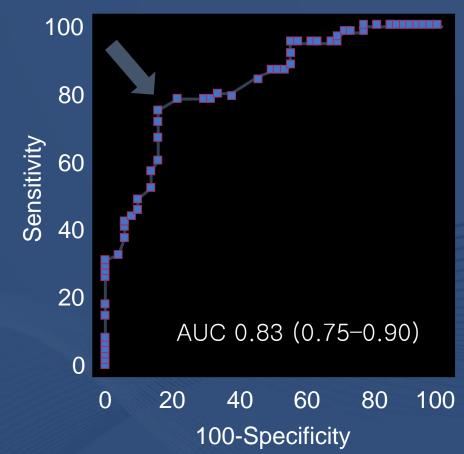


Park SJ et al. JACC Interv 2014;7:868–74

AMC Data (n=112)

- Old data (MLA 6.0mm²) included downstream SB disease, and 32 of 55 (58%) were distal LM lesions that usually extend to the SB ostia
- Recent data (MLA 4.5mm²) evaluated only pure LM lesions, which more reliably assessed the impact of LM-MLA on functional significance

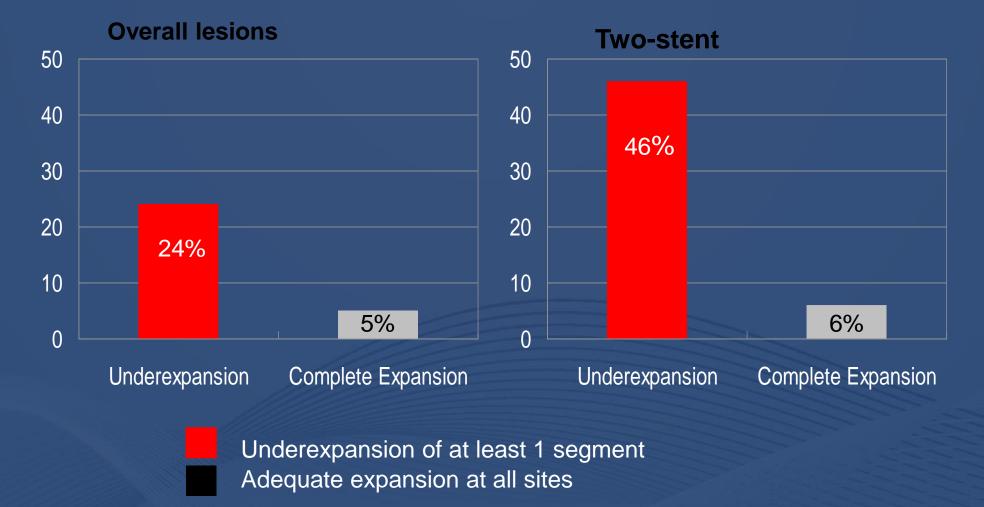
TABLE 1.	Baseline Clinical, Angiographic, and IVUS
Characteri	stics of Patients (n=55)


	Age, y	62±11
	Diabetes mellitus, n	20
	Hypertension, n	50
	Smoking, n	39
	Prior bypass surgery, n	13
	Ostial LM stenosis, n	20
	Mid-I M steposis, n	3
_ <	Distal LM stenosis, n	32

New LM MLA 4.5mm²

Matched with FFR <0.80 Ostial and Shaft LM Disease (N=112)

Sensitivity79%Specificity80%PPV83%NPV76%

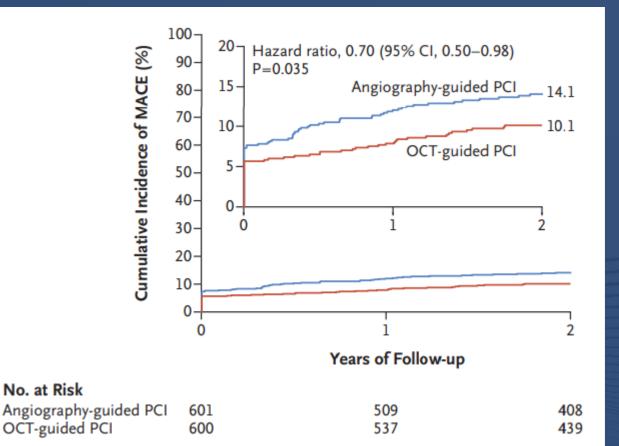

8TH COMPLEX PCI 2023 MAKE IT SIMPLEI: TECHNICAL FORUM A TO Z

Park SJ et al. JACC Interv 2014;7:868–74

Frequency of ISR in LM Lesions

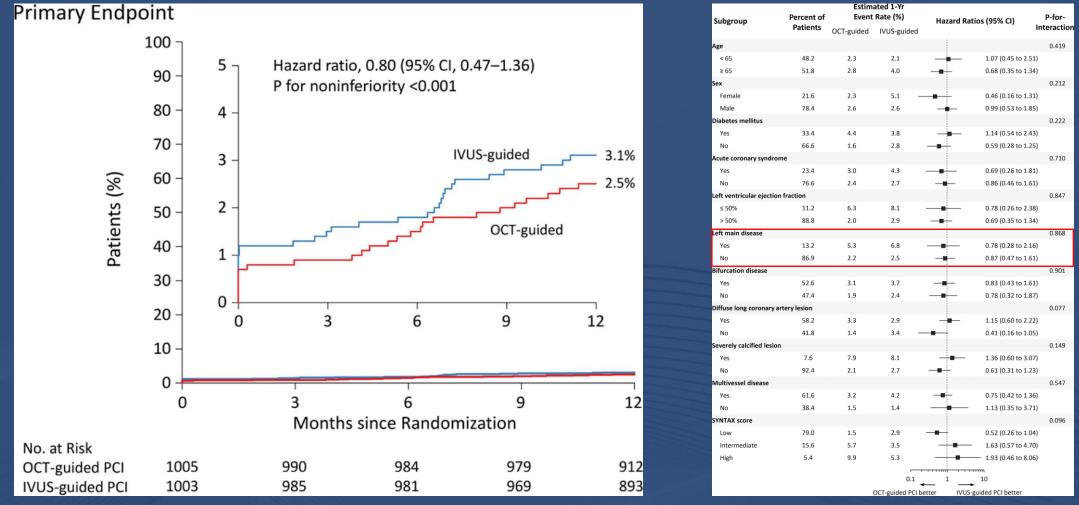
with vs. without Underexpansion

Kang et al. Circ Cardiovasc Interv 2011 2011;4:1168-74



OCT in LM disease

OCT-guidance associated with better outcome in LMCA stenting compared with angiography guidance alone



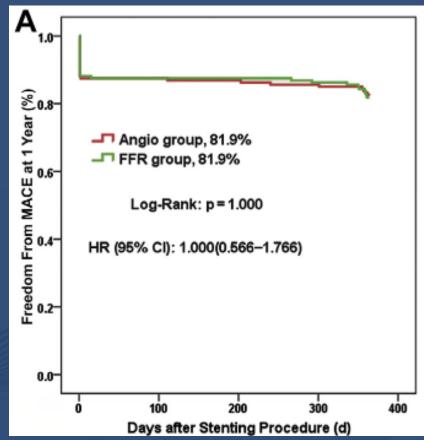
Subgroup	OCT-Guided PCI (N=600)	Angiography-Guided PCI (N=601)	Hazard Ratio	(95% CI)	
	no. of events/total no. of patients (%)				
All patients	59/600 (10)	83/601 (14)		0.70 (0.50-0.98)	
Sex					
Female	9/127 (8)	18/126 (15)	•;-	0.49 (0.22-1.08)	
Male	50/473 (11)	65/475 (14)		0.76 (0.53-1.10)	
Age					
<65 yr	29/249 (12)	39/248 (16)	- + -	0.73 (0.45-1.18)	
≥65 yr	30/351 (9)	44/353 (13)		0.67 (0.42-1.07)	
Diabetes mellitus					
Yes	10/103 (10)	16/97 (17)		0.55 (0.25-1.20)	
No	48/490 (10)	66/497 (14)		0.73 (0.5-1.06)	
Left main coronary artery as trial bifurca	ation				
Yes	15/111 (14)	20/116 (19)		0.78 (0.40-1.51)	
No	44/489 (9)	63/485 (13)		0.68 (0.46-1.00)	
Stent technique					
One-stent	12/209 (6)	26/219 (12)		0.47 (0.24-0.93)	
Two-stent	47/388 (13)	57/382 (15)	- <u>+</u> +-	0.80 (0.55-1.18)	
Multivessel					
Yes	12/106 (12)	22/125 (18)	+	0.63 (0.31-1.28)	
No	47/494 (10)	61/476 (13)		0.73 (0.50-1.07)	
Acute coronary syndrome or staged PC from recent AMI	I				
Yes	31/270 (12)	39/280 (14)	-i• -	0.81 (0.51-1.30)	
No	28/330 (9)	44/321 (14)		0.61 (0.38-0.98)	
Calcified lesion					
None-to-minor	35/402 (9)	54/405 (14)		0.64 (0.42-0.98)	
Moderate-to-severe	24/198 (13)	29/194 (15)		0.81 (0.47-1.39)	
SB lesion length >5 mm by QCA					
Yes	40/425 (10)	63/413 (16)	+i	0.60 (0.40-0.89)	
No	19/159 (12)	18/169 (11)		1.13 (0.59-2.16)	
SYNTAX score					
<17	17/219 (8)	22/221 (10)		0.77 (0.41-1.45)	
17–21	15/189 (8)	27/181 (15)		0.52 (0.27-0.97)	
>21	27/191 (14)	34/197 (18)		0.82 (0.49-1.35)	
		0.1	1.0	_	
		OCT-Gu	ided PCI Better Angiography	-Guided PCI Better	

N.R. Holm et al. N Engl J Med 2023;389:1477-87

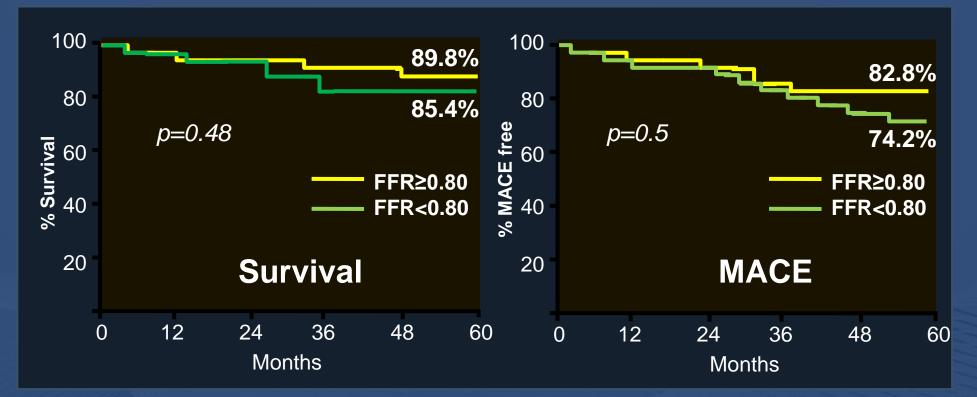
OCT-guidance is non-inferior in LMCA stenting compared with IVUS-guidance

8TH COMPLEX PCI 2023 MAKE IT SIMPLEI: TECHNICAL FORUM A TO Z

Kang et al. Circulation. 2023;148:1195–1206


FFR in LM disease

FFR guided and angio guided provisional stenting of LM DKCRUSH-VI trial


• primary endpoint : 1 yr composite of MACE

Angiographic and FFR guidance of provisional SB stenting of LM bifurcation lesions provided COMPLEX PCISIMILAR 1-year clinical outcome. J Am Coll Cardiol Inty 2015;8:53

FFR guided PCI in Equivocal LMCA

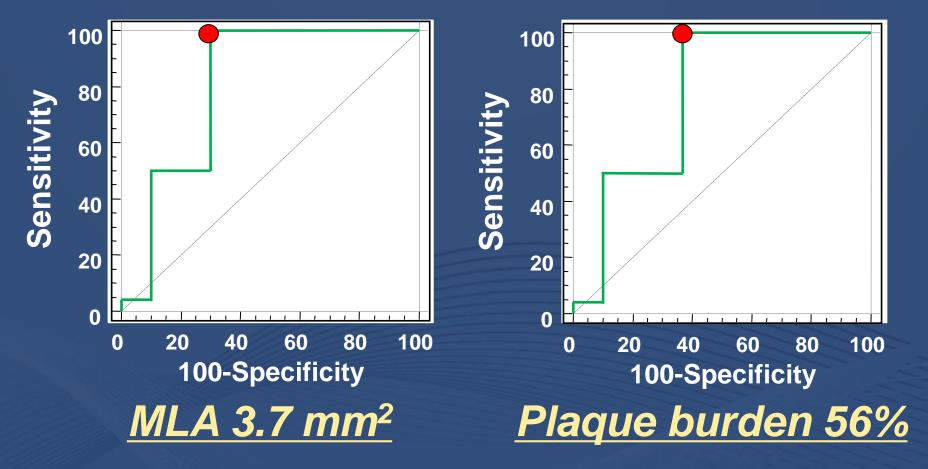
In 213 patients with an equivocal LMCA stenosis
FFR ≥0.80: Medication (n=138) vs. FFR<0.80: CABG (n=75)

An FFR-guided strategy showed the favorable outcome.

Circulation. 2009;120:1505-1512

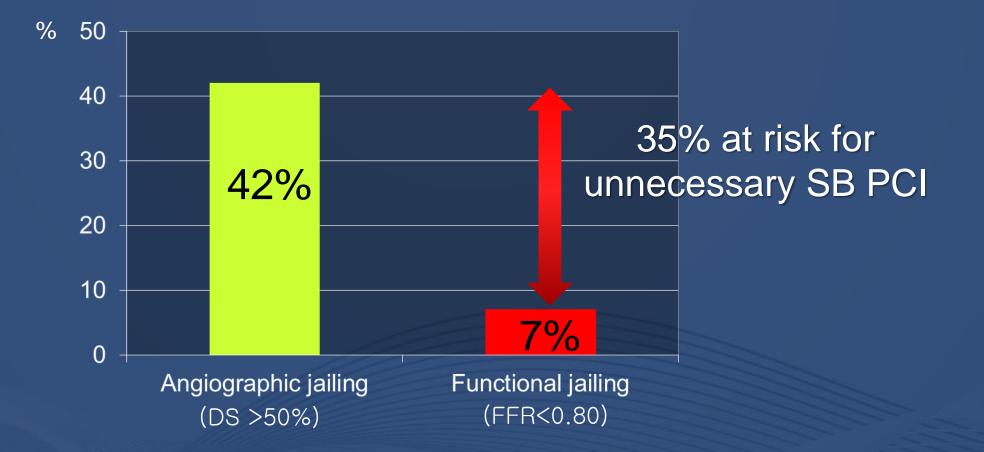
Use of IVUS vs. FFR in SB Assessment After LM Cross-over

	SB-pullback IVUS	SB FFR
Advantage	 Confirm the anatomical compromise and MLA loss Mechanism of SB jailing 	 Confirm the functional SB compromise
Pitfalls	 MLA-FFR mismatch No MLA criteria Low feasibility 	 Minority - not feasible

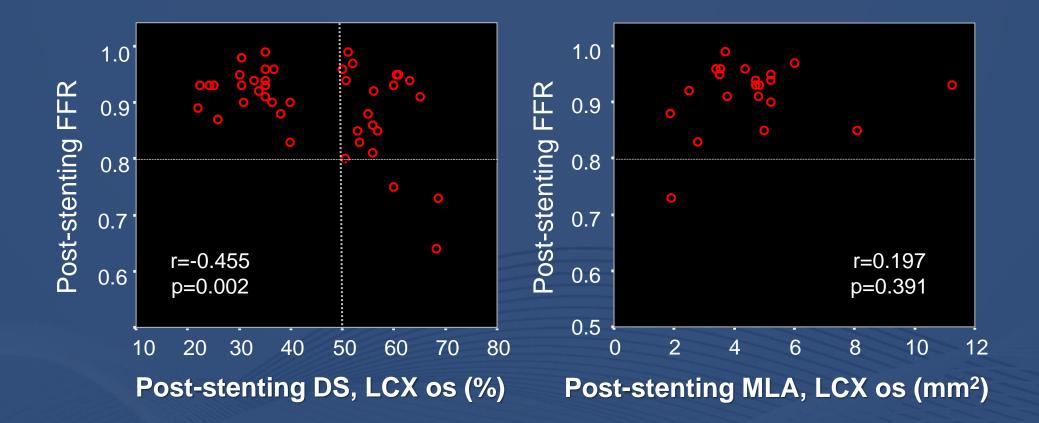

SB FFR

COMPLEX PCI 2023 MAKE IT SIMPLEI: TECHNICAL FORUM A TO 2

Functional Compromise of LCX after LM Cross-Over Stenting

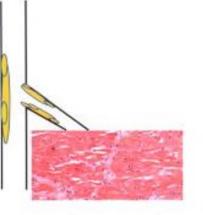

Preporcedural MLA and plaque burden of poststenting LCX FFR < 0.80

Kang SJ et al. Catheter Cardiovasc Interv. 2014;83:545-552

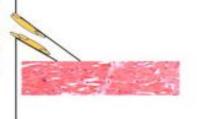

Functional LCX Compromise In LMCA Bifurcations (LCX ostial DS<50%)

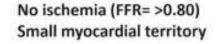
When Pre-PCI LCX Ostial DS<50%, Just Do Single Stent!

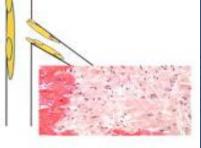
LMCA Bifurcation Post-stenting LCX Stenosis



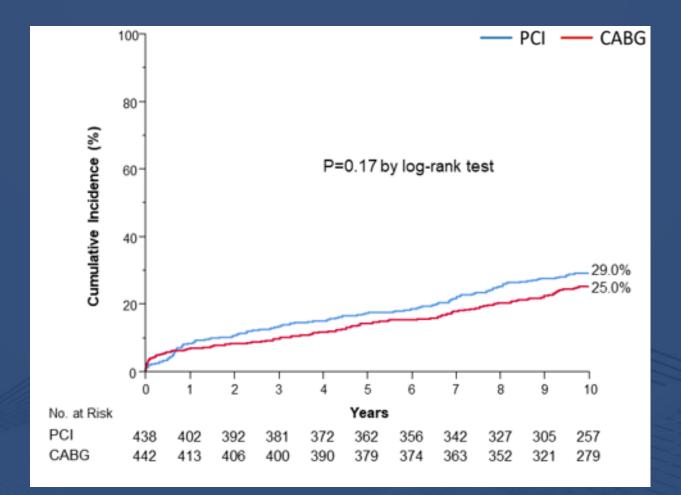
Kang et al. Catheter Cardiovasc Interv 2014;83:542-52


8TH COMPLEX PCI 2023 Make It simplei: technical forum a to z

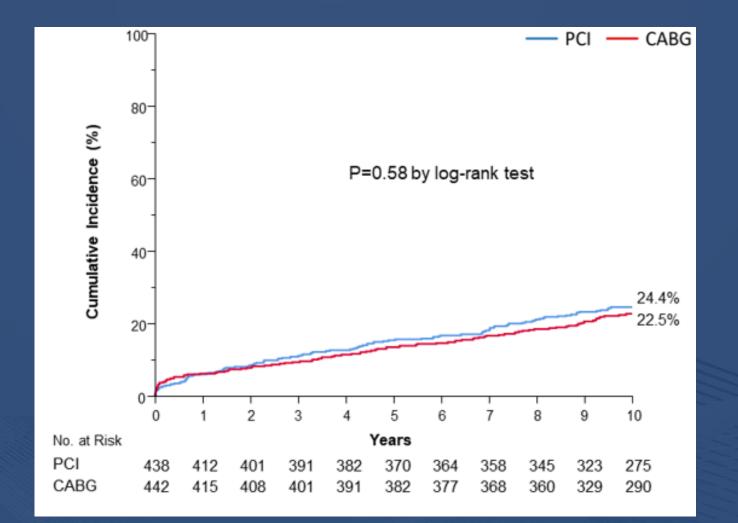

Why Mismatch?


- Lesion eccentricity of SB
- Negative remodeling of ostium
- Various size of myocardium
- Strut artifacts
- Focal carina shift

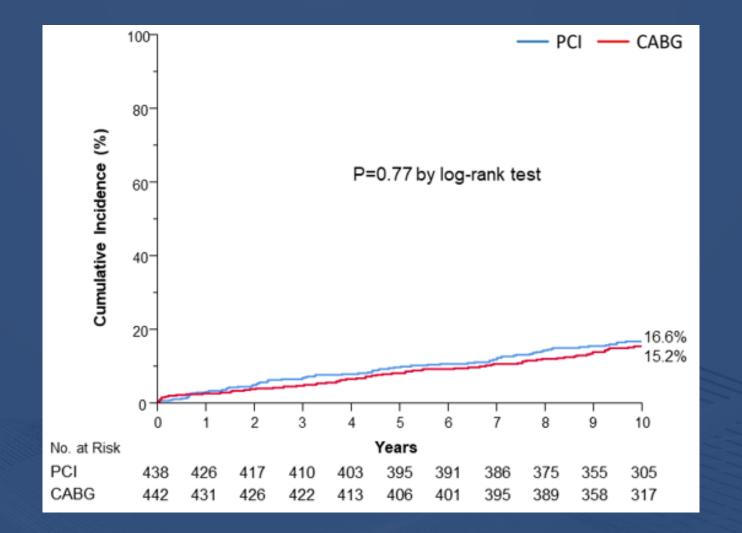
Ischemia (FFR= <0.80) Large myocardial territory


No ischemia (FFR= >0.80) Large myocardial infarct/ large territory

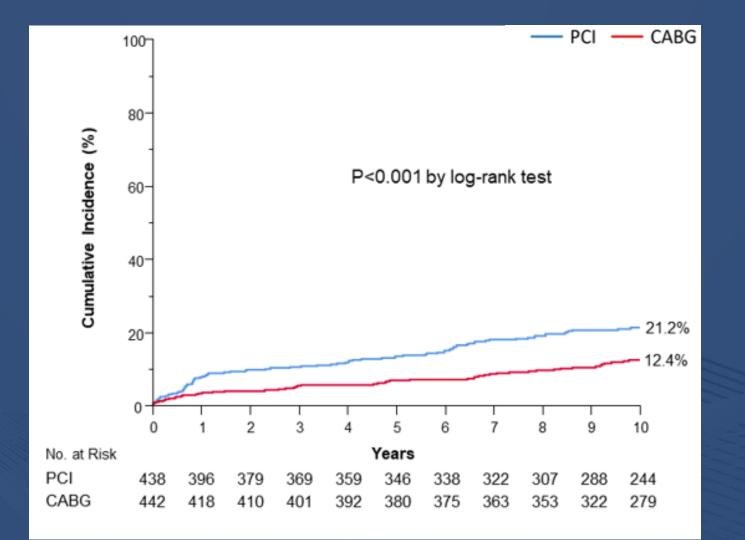
Sachdeva et al. Am J Cardiol 2011;107:1794-5



Extended Follow-Up of the **BEST** trial : Primary Composite Endpoint



Extended Follow-Up of the **BEST** trial : Death, Stroke, or MI


CVRF

Extended Follow-Up of the **BEST** trial : All-cause death

Extended Follow-Up of the **BEST** trial : Repeat Revascularization

JM Ahn et al. Circulation 2022 sep 19

CHNICAL FORUM A TO 1

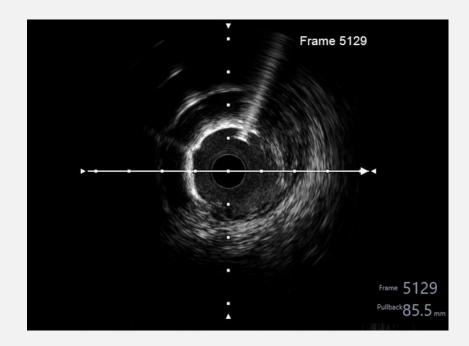
Extended Follow-Up of the **BEST** trial : Repeat Revascularization

Age ≥65 yr 84 <65 yr 66 Sex	PCI n / total n	CABG			Interaction
Age ≥65 yr 84 <65 yr 66 Sex	n / total n	UNDO			
Age ≥65 yr 84 <65 yr 65 Sex		(%)			
≥65 yr 84 <65 yr 65 Sex	51/438 (34.5)	134/442 (30.3)	H-	1.18 (1.88-1.56)	÷
<65 yr 65 Sex					0.18
Sex	8/229 (38.4)	91/252 (36.1)	H H -1	1.07 (0.74-1.53)	
(CT).T7.1	3/209 (30.1)	43/190 (22.6)	⊢ ∎i	1.43 (0.97-2.10)	
Male 10					0.59
	01/304 (33.2)	98/325 (30.2)	⊢∎⊣	1.13 (0.89-1.45)	
Female 50	0/134 (37.3)	36/117 (30.8)	⊢ ∎−-1	1.26 (0.77-2.06)	
Diabetes					0.009
Yes 7	6/177 (42.9)	59/186 (31.7)	H-	1.52 (1.12-2.07)	
No 7	5/261 (28.7)	75/256 (29.3)	-	0.97 (0.67-1.39)	
ACS					0.47
Yes 8	7/228 (38.2)	76/238 (31.9)	- ■-1	1.24 (0.96-1.60)	
No 6	4/210 (30.5)	58/204 (28.4)	H	1.10 (0.74-1.62)	
Ejection fraction					0.68
≤ 40% 1:	3/17 (76.5)	11/17 (64.7)		1.58 (0.53-4.74)	
>40% 1	38/421 (32.8)	123/425 (28.9)	H E H	1.17 (0.90-1.51)	
Vascular extent					0.22
3VD 1	26/330 (38.2)	111/349 (31.8)		1.27 (0.99-1.62)	
2VD 23	5/108 (23.1)	23/93 (24.7)	⊢ _	0.93 (0.54-1.61)	
SYNTAX score					0.42
Score≥33 2	7/66 (40.9)	27/79 (34.2)	+∎1	1.26 (0.94-1.69)	
Score 23-32 6	6/187 (35.3)	54/177 (30.5)	⊢∎⊣	1.25 (0.87-1.79)	
Score≤22 5	8/185 (31.4)	53/186 (28.5)	⊢ −−1	1.09 (0.74-1.62)	
EuroSCORE					0.038
≥6 2	2/51 (43.1)	29/59 (49.2)		0.83 (0.50-1.39)	
<6 1	29/387 (33.3)	105/383 (27.4)	+-■1	1.28 (0.93-1.76)	
Complete Revascularization					0.43
Yes 7	0/215 (32.6)	86/295 (29.2)	⊢∎⊣	1.09 (0.83-1.42)	
No 7	9/215 (36.7)	39/122 (32.0)	⊢	1.27 (0.80-2.00)	
		0.1	1	10	
		PCI better	CAF	3G better	

8TH COMPLEX PCI 2023 MAKE IT SIMPLEI: TECHNICAL FORUM A TO Z

WOLVERINE[™] Cutting Balloon[™] Dilatation Device

In-Service Presentation


IC-1471301-AA ©2023 Boston Scientific Corporation or its affiliates. All rights reserved.

Indications and Intended Use

The WOLVERINE[™] Cutting Balloon Device is indicated for use in patients with coronary vessel disease who are acceptable candidates for coronary artery bypass graft surgery, should it be urgently needed, for the purpose of improving myocardial perfusion.

In addition, the target lesion should possess the following characteristics:

- Discrete (< 15 mm in length), or tubular (10 mm to 20 mm in length)
- Reference vessel diameter (RVD) of 2.00 mm to 4.00 mm
- Readily accessible to the device
- Light to moderate tortuosity of proximal vessel segment
- Nonangulated lesion segment (< 45°)
- Smooth angiographic contour
- Absence of angiographically visible thrombus

WOLVERINE[™] FDA US IFU Updates November 2021

Boston Scientific

INTENDED USE/INDICATIONS FOR USE

The Wolverine Cutting Balloon Device is indicated for dilatation of stenoses in coronary arteries for the purpose of improving myocardial perfusion in those circumstances where a high pressure balloon resistant lesion is encountered. In addition, the target lesion should possess the following characteristics:

- Discrete (< 15 mm in length), or tubular (10 mm to 20 mm in length)
- Reference vessel diameter (RVD) of 2.00 mm to 4.00 mm
- · Readily accessible to the device
- · Light to moderate tortuosity of proximal vessel segment
- Nonangulated lesion segment (< 45°)
- Smooth angiographic contour
- Absence of angiographically visible thrombus and/or calcification

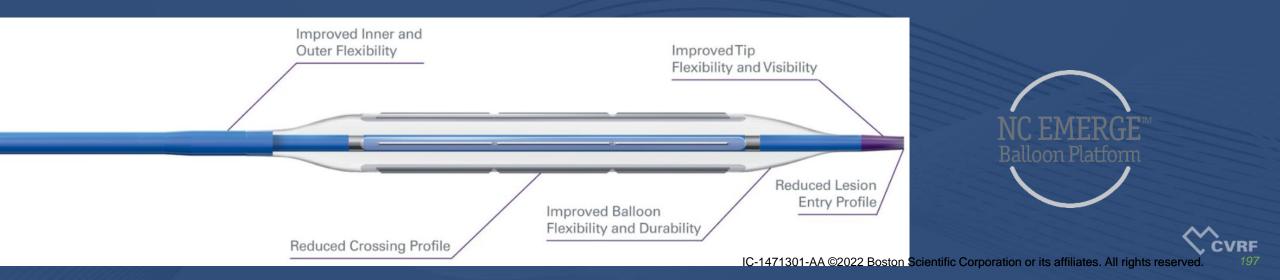
Changes

- Removed "and/or calcification" in target lesion characteristics
 bullet points
- Emergency surgical backup now a clinical consideration
- Additional cleanup and formatting for clarity

Rationale

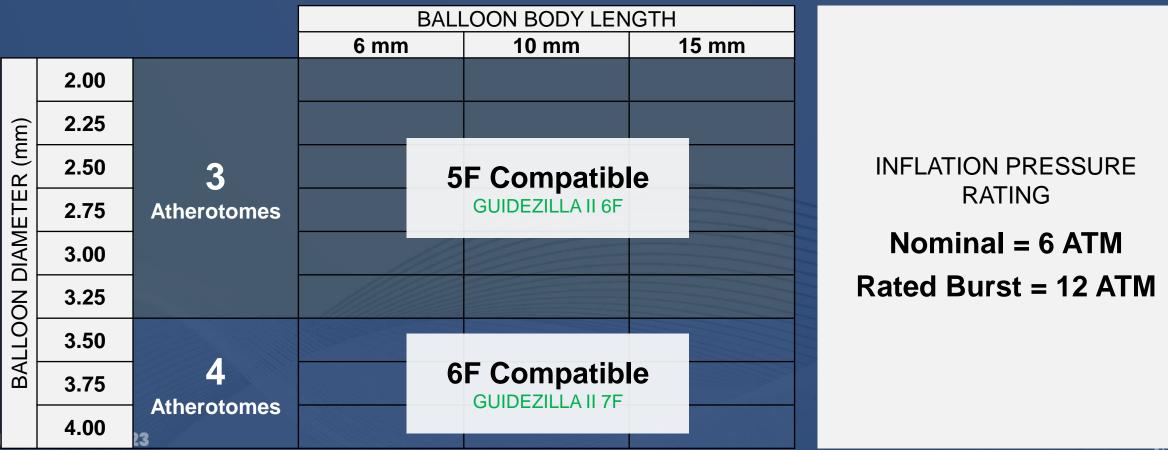
- Align Instruction for Use with modern product usage
 - Cutting Balloon was first introduced before stents were approved for coronary use
 - Modern use of cutting balloon has since changed
- Supported by extensive literature, clinical data and real-world experience
- FDA approved changes in Nov 2021

Product Design


Traditional balloon angioplasty can result in complications like:

VESSEL DISSECTION POOR LUMINAL GAIN LESION RECOIL

BALLOON SLIPPAGE POOR STENT APPOSITION


The WOLVERINE[™] Advantage

The unique design of the WOLVERINE Cutting Balloon is designed with **proprietary atherotomes** on a **low pressure non-compliant balloon** to directly address each of these complications

Balloon Matrix and Inflation Pressures

Monorail Balloon Catheter with working lengths of 6, 10 and 15 mm For vessels with reference diameter of 2.0 – 4.0 mm

MAKE IT SIMPLEI: TECHNICAL FORUM A TO Z

RF

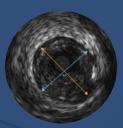
Sizing Considerations

WOLVERINE[™] utilizes the NC EMERGE[™] Catheter Platform, yet the balloon was designed to have a lower nominal pressure resulting in a different compliance

Growth Chart Example (3.0 mm)

Wolverine[™] Coronary Cutting Balloon[™]

MONORAIL™


Microsurgical Dilatation Device

atm - kPa		3.00mm
Pressure		Balloon O.D.
3.0 - 304		2.88
4.0 - 405		2.94
5.0 - 507		2.99
6.0 - 608	NOMINAL	3.06
7.0 - 709		3.10
8.0 - 811		3.15
9.0 - 912		3.18
10.0 - 1013		3.22
11.0 - 1115		3.25
12.0 - 1216	RATED*	3.28 -

Sizing Considerations:

WOLVERINE grows roughly a quarter size when going from nominal (6 ATM) to rated burst pressure (12 ATM)

Physician consensus is to measure the normal distal reference with IVUS and then downsize WOLVERINE a half size from that measurement

Oversizing at nominal pressure will cause atherotomes to be "pillowed" by the balloon and may not provide adequate forces to modify calcium

Oversizing at rated burst pressure may lead to vessel stretching and trauma due to balloon growth (not atherotomes)

Oversizing Example Blue = Balloon Red = Vessel

199

MAKE IT SIMPLEI: TECHNICAL FORUM A TO

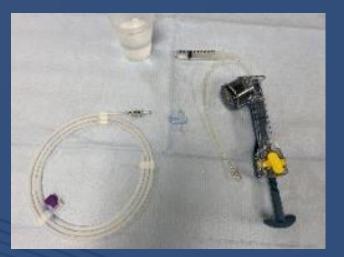
Device Preparation and Use Instructions

Device Preparation

Important: WOLVERINE[™] preparation uses a wet negative prep procedure. Customary balloon preparation methods do not apply!

Sizing

 The Wolverine IFU states that the inflated diameter of the device should approximate a ratio of 1.1:1 in relation to the average diameter of the reference vessel. Oversizing increases risk of perforation. As stated earlier, sizing a quarter to half size down may be needed if using higher inflation pressures.


Unpacking

- Using sterile technique, remove the device in its protective hoop from its package and place onto a sterile field.
 - Do not remove the device from its protective hoop.
 - Do not remove the balloon protector from the device tip.

Attach Stopcock & Prepare Inflation Device

- Connect a three-way stopcock to the balloon port.
 - Turn stopcock lever OFF to the balloon.
 - Prepare an inflation device with 5 cc of contrast solution (mixture must be at least 50:50 contrast medium and sterile saline).

201

Device Preparation

- Attach the inflation device to stopcock.
 - Assure luer connections are properly aligned to avoid stripping the luer thread causing subsequent leakage and use care when connecting the device to avoid damage (e.g., shaft kink).
 - Purge stopcock by flushing 1-2 cc of contrast medium through the middle port.

4

Pull Full Negative

 Turn the stopcock lever towards the middle port or open to the balloon and immediately withdraw inflation device plunger to full negative and place the inflation device in a locked position. This will maintain a constant vacuum on the device.

Remove Device from Hoop

• When the device is ready to be inserted into the body, remove the device from its protective hoop. Use care when removing the device to avoid damage (e.g., shaft kink).

Device Preparation

Remove Balloon Protector

• Using straight force (not a twisting motion), pull the balloon protector distally from the device tip. For WOLVERINE MR Cutting Balloon Devices, remove the mandrel distally after removing the balloon protector.

• Caution: If unusual resistance is felt during removal of the balloon protector or mandrel, do not use the device and replace with another.

Coiling & Securing with CLIPIT Clip

- The WOLVERINE MR Cutting Balloon Device may be coiled once and secured using the CLIPIT Clip provided in the device package.
 - Only the proximal shaft should be inserted into the CLIPIT Clip; the clip is not intended for the distal end of the device.
 - Remove the CLIPIT Clip prior to inserting the device into the patient's body.

Flush Guidewire Lumen

• Flush the guidewire lumen of the device with heparinized saline. For WOLVERINE MR Cutting Balloon Device flush through the distal tip of the device.

SterilityMaintain device on a sterile table until ready to use.

Inflation & Removal Instructions

Inflation

Go Slow

- Under fluoroscopy, slowly inflate the device (1 ATM/5 sec) to 6 ATM (nominal size).
 - Do not inflate the device above 12 ATM (rated burst pressure).
 - If difficulty is experienced during balloon inflation, do not continue inflation; deflate and remove the device.

Treat Distal then Proximal

• When using the device on long lesion segments, treat distal portion first and then proximal lesion segment second. Repeat coronary arteriography after each use to evaluate results.

Removal

Deflate & Pull Negative

• Deflate the device by dialing down on the inflation/deflation device, then pull a negative vacuum. Maintain vacuum on the device and verify full deflation under fluoroscopy.

Confirm Successful Result

• Repeat coronary arteriography to confirm successful result.

Withdraw

• Withdraw the device into the guiding catheter. While withdrawing the deflated device and guidewire from the guide catheter through the hemostasis valve, tighten the hemostasis valve.

Tips and Tricks

Prior to advancing the catheter, it may help to increase pressure to 1 atm and then pull negative to aid in loosening the packaged balloon crimp and provide added flexibility

Tips and Tricks

Deflating slowly by dialing down pressure methodically to optimize balloon re-wrap

Clinical Use Scenarios

WOLVERINE[™] The right tool for vessel preparation device

Proper Solution to Help Prepare Lesions Prior to Stenting

WOLVERINE is right tool at helping treat a wide range of lesions:

- Cuts fibrotic plaque to limit recoil
- Cracks thin concentric and eccentric calcium
- Prepare small vessels prior to Drug Coated Balloon
- Address In-Stent Restenosis
- Limit balloon slippage in coronary ostium and bifurcation lesions

Cutting balloon angioplasty device designed with improved crossability and deliverability, to deliver precise and controlled cutting action

Clinical Use Scenarios

.....

LESION

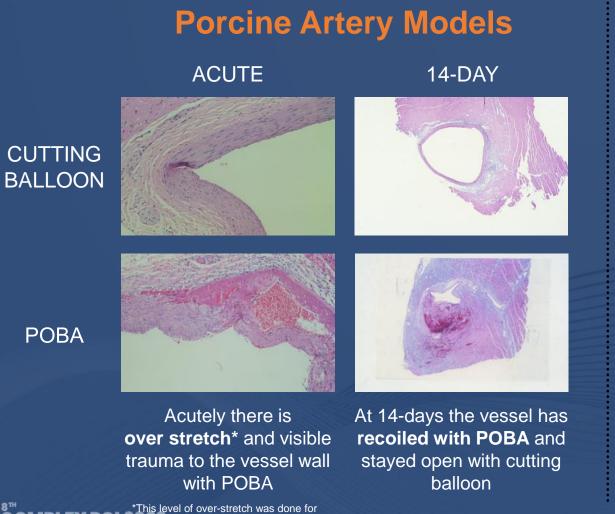
.....

CUTTING BALLOON

2023

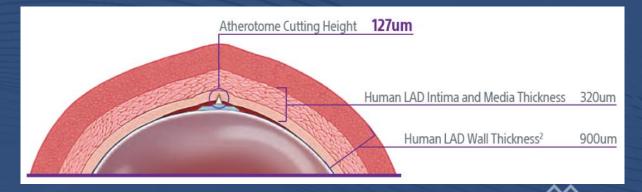
MAKE IT SIMPLEI: TECHNICAL FORUM A TO Z

8TH


	Small Vessel Lesions REDUCE RESTENOSIS	Ostial and Bifurcation Lesions AVOID PLAQUE SHIFT	Fibrotic Lesions CHANGE LESION COMPLIANCE	Calcified Lesions CRACK CALCIUM TO ALLOW EXPANSION
CHALLENGES	 High rates of restenosis Tendency to dissect Abrupt closure¹ 	 Recoil Plaque Shift Side Branch Compromise 	 High concentration of elastin and muscle fibers High risk of vessel recoil 	 Calcium deposits in plaque that prevent lumen gain Varying degrees of burden and arcs
OBJECTIVES	 Use as stand-alone therapy DCB or Stent? 	 Dilates while reducing elastic recoil² More plaque compression Minimal plaque shift Less vessel stretching³ 	 Atherotomes score through fibrotic plaque⁴ Reduce hoop strain and limit recoil Lumen Gain 	 Use as stand-alone therapy in eccentric and thin concentric calcium Possible additive therapy with atherectomy Lumen Gain

IC-1471301-AA ©2023 Boston Scientific Corporation or its affiliates. All rights reserved.

ĊVRF


207

WOLVERINE™ Mechanism of Action

Reliable Option

- 25+ Year Track Record: WOLVERINE has been used for over 25 years, and has a long track record of safety with real-world patients and clinical trials
- Atherotome Height: Approximately the same height as 1st generation stents or a human hair
- **Penetration Depth:** Even when placed in healthy tissue, WOLVERINE's atherotomes typically only penetrate partially into the media

VRF

208

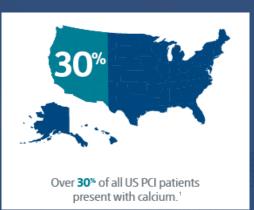
Photos taken by Boston Scientific. Results of pre-clinical studies are not predictive of clinical performance. Clinical results may vary

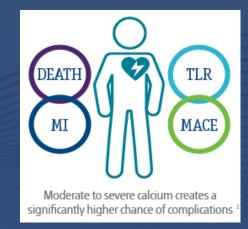
ational purposes only

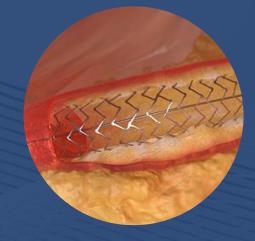
POBA

WOLVERINE Cutting Balloon[®] Dilatation Device

Calcium Modification


Calcium Needs to be Properly Treated


Calcium is a growing problem that can negatively impact PCIs if left untreated

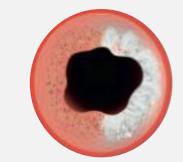

Calcium is prevalent in patients undergoing PCI

Calcium leads to worse clinical outcomes

Calcium can inhibit optimal stenting

8[™] **COMPLEX PCI 2023** . As reported to INFIGURATION ATO² . Généreux, P. et al. J Am Coll Cardiol 2014 May:63(18):1845-1854

IC-1471301-AA ©2023 Boston Scientific Corporation or its affiliates. All rights reserved.


Calcium Morphology

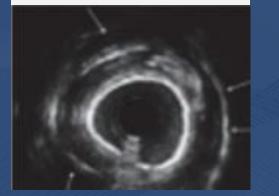
CONCENTRIC

360°Calcium Arc Smooth Surface

ECCENTRIC

180 – 270° Calcium Arc Irregular Surface

NODULE



90 – 180° Calcium Arc Luminal protrusion and irregular leading edge

PSEUDO-NODULE

Extra-plaque during CTO-PCI

ĊVRF

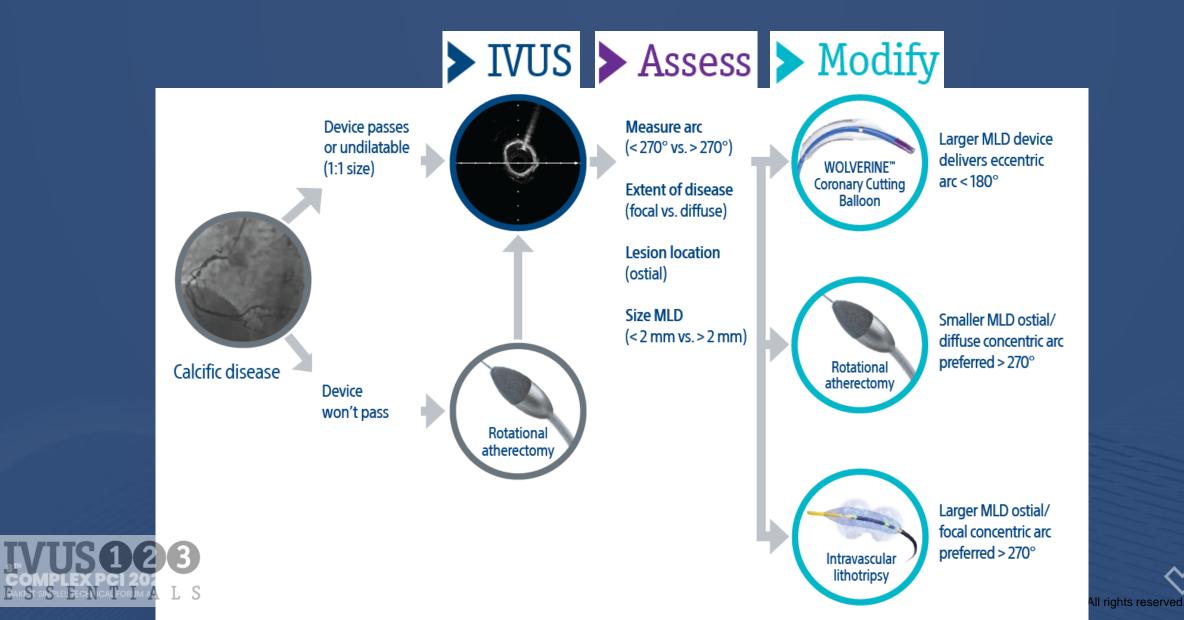
COMPLEX PCI 2023

IC-1471301-AA ©2023 Boston Scientific Corporation or its affiliates. All rights reserved.

The Right Tools Make a Difference

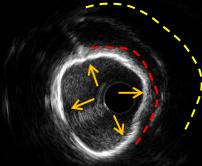
Controlled Mechanism of Action

Atherotomes anchor to calcium and produce controlled, longitudinal fractures


Enables up to 4 points of contact with calcium, improving the probability of modification with a single balloon

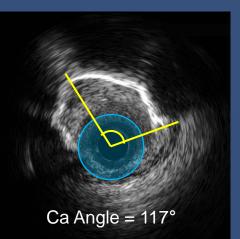
Pressure at atherotomes amplified to precisely fracture calcium at lower balloon inflation pressures

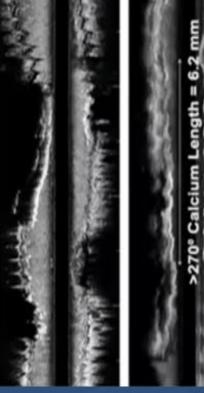
Calcific Lesion Modification Strategy



VRF

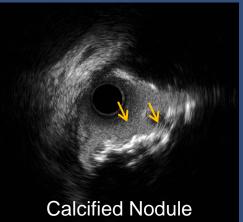
Assess Calcium FIRST with IVUS


Thickness



Superficial Calcium with Reverberation

----- Reverbera


Angle

Length

LONGITUDINA VIEW

Nodule

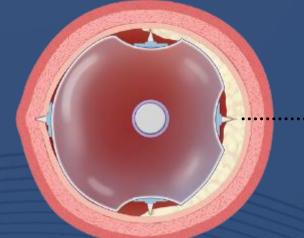
VRF

214

IC-1471301-AA ©2023 Boston Scientific Corporation or its affiliates. All rights reserved.

Proven Mechanism of Action

Effective. Safe. Versatile.


Wolverine's innovative design safely and efficiently cracks calcium³

Atherotome Amplified Force.¹

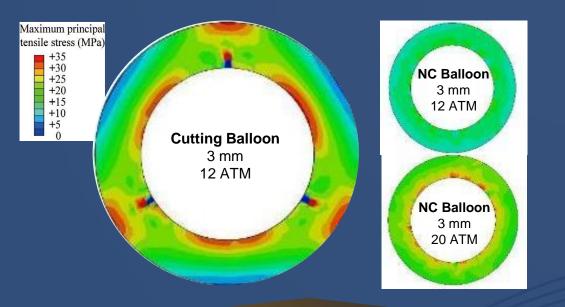
The atherotomes anchor into the plaque and amplify pressures generated by the balloon. This creates controlled, longitudinal cracks in the calcium.¹

Safely Cracks Calcium.

Due to its unique design, Wolverine can modify calcium at lower pressures than POBA.³ Atherotomes penetrate a small distance into the vessel wall, even in healthy tissue.⁴

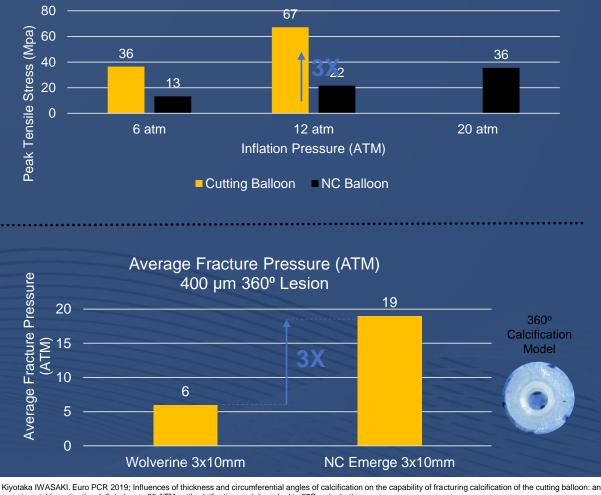
Pre-clinical Swine Coronary artery post

Atherotome Cutting Height	127 µm
Human LAD Media Thickness ²	320 µm
Human LAD Wall Thickness ²	900 µm


uter models are not predictive of clinical performance. Clinical results may vary.

ic. Results of internal bench studies are not representative of clinical performance. Clinical results may vary

IC-1471301-AA ©2023 Boston Scientific Corporation or its affiliates. All rights reserved

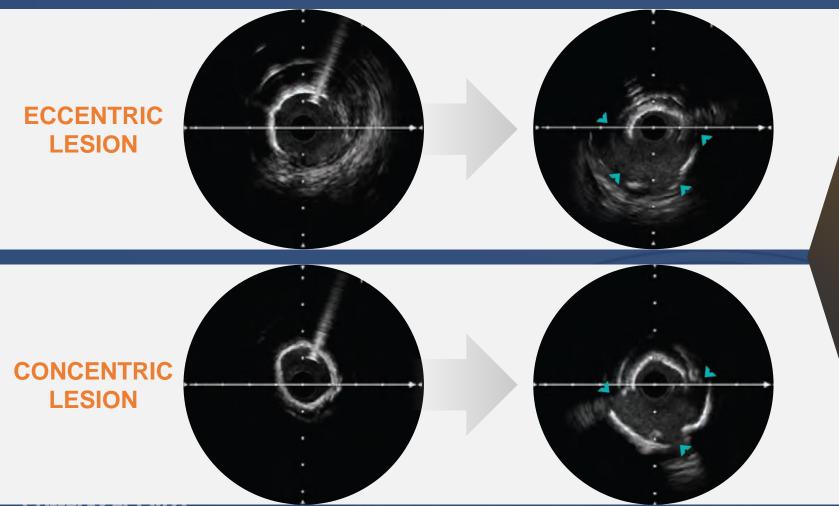

Treating Calcium with WOLVERINE™

Calcification Model Stress Distributions

- WOLVERINE[™] atherotomes amplified balloon peak tensile strength 3X vs NC Balloon
- Force is focused at atherotomes for controlled even calcium cracking
- Balloon dilation force is enhanced between the anchored atherotomes

©2022 Boston Scientific Corporation or its affiliates. All rights reserved. Xiaodong Zhu et al., Circ Rep 2021; 3: 1 – 8 doi: 10.1253/circrep.CR-20-0070. Results of computer models are not predictive of clinical performance. Clinical results may vary.

Peak Value of Maximum Principle Tensile Stress (MPa)


experimental investigation. Inflated up to 20 ATM until calcification model cracked in 37C water bath. Results of bench models are not predictive of clinical performance. Clinical results may vary.

IC-1471301-AA ©2023 Boston Scientific Corporation or its affiliates. All rights reserved.

Demonstrated Efficacy in both Concentric and Eccentric Calcium

BEFORE

AFTER

WOLVERINE[™] has clinically demonstrated effectiveness in calcium ranging from 0° to 360° with a proven mechanism of action.¹

CVRF

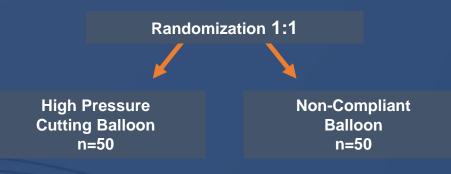
ma@AKEUTSHEEFTSCHNIGALFORBUM, ACO Z Victoria Hospital, Belfast, Ireland; AUG 2020 I. Ishihara et al.; Cardio. Intervention and Therapeutics (2021) 36:198-207

WOLVERINE™ Cracking Power in Action!

360° Calcium Simulated Lesion - Performed by Boston Scientific Research & Development

VRF

The COPS Trial Cutting balloon to Optimize Predilatation for Stenting


Primary Investigators Dr. Antonio Mangieri, Dr. Antonio Columbo

Three hospitals in Italy

Maria Cecilia Hospital, Humanitas Rozzano, Clinica Mediterranea

Study Design

 Prospective, randomized, multicenter open-label trial which enrolled 100 patients with significant calcified lesions evaluated at IVUS

Primary Endpoint

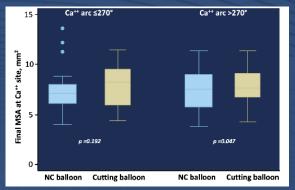
• Minimal Stent Area (MSA) at Calcium Site

Secondary Endpoint

- Eccentricity Index : (LD max LD min) / LD max
- MSA
- Device Failure
- Safety: Procedural Complications & One-Year MACE

IC-1471301-AA ©2023 Boston Scientific Corporation or its affiliates. All rights reserved.

The COPS Trial: Results


Study contained a range calcium 100 – 360° and 29.4% avg of deep calcium

	Overall	CB (n=44)	NCB (n=43)	P value
Lesion Type				
Type B1	25 (28.7)	14 (32.5)	11 (25)	
Туре В2/С	62 (71.2)	29 (67.4)	33 (75)	
Calcium distribution				0.482
Mixed Calcium	34 (40)	15 (34.8)	19 (45.2)	
Deep Calcium	25 (29.4)	15 (34.8)	10 (23.8)	
Superficial Calcium	26 (30.5)	13 (30.2)	13 (30.9)	
Arch of calcium (degrees)	266±84	274±84	258±85	0.373
Calcium length (mm)	12±6.6	11.9±7.3	12.5±6	0.667
Lesion length (mm)	24.3±9.7	23.5±9.6	25.1±9.8	0.442
Minimal lumen area (mm²)	3.2±0.9	3.4±1.1	3±0.7	0.02
QCA evaluation				
Reference vessel diameter (mm)	3.4±0.4	3.51±0.3	3.39±0.4	0.112
Percentage of stenosis (%)	81.2±8.1	79.4±7.6	82.7±8.3	0.97

COMPLEX PCI 2023 MAKE IT SIMPLEI: TECHNICAL FORUM A TO 2

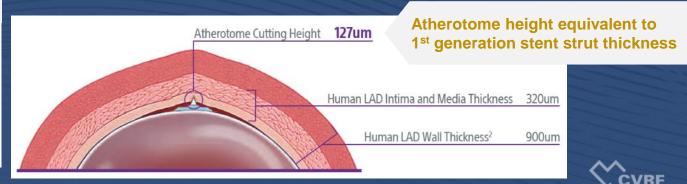
WOLVERINE is clinically proven to provide superior MSA at the calcium site compared to POBA

	CB (n=44)	NCB (n=43)	P value
Final MSA (mm²)	7.1±1.7	6.5±2.1	0.116
Minimal Stent Diameter	2.7±0.4	2.5±0.4	0.064
Maximal Stent Diameter	3.2±0.4	3.1±0.4	0.189
Final MSA at calcium site	8.1±2	7.3±2.1	0.035
Minimal stent diameter at calcium site	2.9±0.7	2.7±0.4	0.016
Maximal stent diameter at calcium site	3.5±0.5	3.3±0.4	0.132
Eccentricity index at calcium site	0.84±0.7	0.8±0.8	0.013

The benefit was magnified in presence of severe calcifications

CVRF

The COPS Trial: Safety


WOLVERINE[™] use in calcium is safe, with no significant differences in procedural complications and 1-year MACE

	Overall	CB (n=44)	NCB (n=43)	P value
Device failure	3 (3.4)	3 (6.8)	0 (0)	0.517
Additional use of rotational atherectomy	1 (1.1)	1 (2.2)	0 (0)	0.79
Ellis type 1 vessel rupture	2 (2.2)	2 (4.4)	0 (0)	0.189
Implantation of a covered stent	1 (1.1)	1 (2.2)	0 (0)	0.65
Final TIMI flow >3	87 (100)	44 (100)	43 (100)	0.854
One year Follow-up				
Deaths	3 (3.4)	1 (1.1)	2 (4.6)	0.342
Cardiac deaths	1 (1.1)	0 (0)	1 (2.3)	0.887
Stroke	0 (0)	0 (0)	0 (0)	0.91
MI	0 (0)	0 (0)	0 (0)	0.96
TLR COMPLEX PCI 2023	3 (3.4)	1 (1.1)	2 (4.6)	0.49

MAKE IT SIMPLET: TECHNICAL FORUM A TO

WOLVERINE provided excellent procedural success with limited need for atherectomy (n=1) despite a high rate of severe calcium in the study

WOLVERINE is both a safe and effective option for modifying severely calcified lesions

The COPS Trial: Key Learnings

WOLVERINE[™] resulted in a **significantly larger minimal stent area** at the calcified segment.

This difference was especially apparent in cases with **severe calcification**.

Stents had significantly **more uniform expansion** after vessel preparation with WOLVERINE.

WOLVERINE is safe for calcium treatment, even when inflated past rated burst pressure.

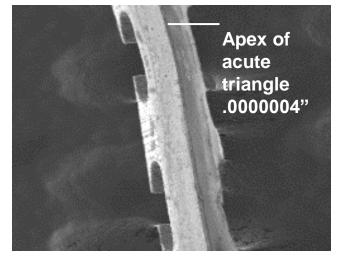
IC-1471301-AA ©2023 Boston Scientific Corporation or its affiliates. All rights reserved.

Competitive Product Comparisons

WOLVERINE vs FLEXTOME

	WOLVERINE™	FLEXTOME™
Manufacturer	Boston Scientific	Boston Scientific
Guide Cath Compatibility	5F, 6F	5F, 6F
Size Matrix: Diameter (mm)	2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75, 4	2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75, 4
Size Matrix: Length (mm)	6, 10, 15	6, 10, 15
Pressures (ATM)	NOM: 6 RBP: 12	NOM: 6 RBP: 12
Catheter Length (cm)	143	142
Balloon Compliance	Non-Compliant	Non-Compliant
Balloon Platform	NC EMERGE	NC Quantum MAVERICK
Tip Entry Profile	<mark>0.017"</mark>	<mark>0.020"</mark>
Proximal shaft Distal shaft	<mark>1.8Fr / 0.59mm</mark> <mark>2.6Fr / 0.86mm</mark>	<mark>2.0Fr / 0.67mm</mark> <mark>2.7Fr / 0.90mm</mark>
Plaque Mod Method	3 or 4 evenly spaced atherotomes	3 or 4 evenly spaced atherotomes

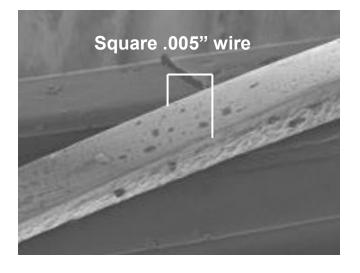
Atherotome Changes


- Reduce non-functional blade height (portion in the cast pad) to improve profile
- Reduce cast pad height and width to improve profile

225

The Atherotome Advantage

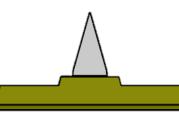
WOLVERINE[™] Cutting Balloon[™] Device Atherotome



WOLVERINE Atherotome Advantage:

- Amplify balloon inflation pressures in calcium
- Create microsurgical incisions in fibrotic plaque

These two applications help to prepare vessels and limit recoil.


Product A **Nitinol Wire**

Scoring Balloon Design:

- Flat scoring design provides a blunt force spread over a greater area.
- May explain why published data shows other scoring balloons to not generate as high of acute gain than cutting balloon.

Matsukawa, et al, Cardiovascular Intervention and Therapeutics (2019) 34:325 - 334

CUTTING BALLOON CROSS SECTION

SCORING BALLOON CROSS SECTION

Competitive Specifications

WOLVERINE[™] is compatible with smaller guide catheter and offer the broad size matrix to treat according to the type of lesions

	WOLVERINE™	Product A	Product B	Product C
Guide Cath Compatibility	5F, 6F	6F	6F	5F
Size Matrix: Diameter (mm)	2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75, 4	2, 2.5, 3, 3.5	2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 4	2, 2.5, 3, 3.5, 4
Size Matrix: Length (mm)	6, 10, 15	6, 10, 15	13	10, 15, 20
Pressures (ATM)	NOM: 6 RBP: 12	NOM: 8 RBP: 16-20	NOM: 6 RBP: 14	NOM: 12 RBP: 20
Catheter Length (cm)	143	137	142	139
Balloon Compliance	Non-Compliant	Semi-Compliant	Semi-Compliant	Non-Compliant
Plaque Mod Method	3 or 4 evenly spaced atherotomes	Wire wrapped balloon	3 scoring elements	Single scoring wire

CVRF

Clinical Study: Cutting Balloon vs. Scoring Balloon in Severely Calcified Patients

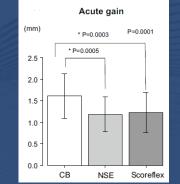
Plaque modification using a cutting balloon is more effective for stenting of heavily calcified lesion than other scoring balloons

Primary Investigator

 Ryuichi Matsukawa, Fukuoka Red Cross Hospital, Fukuoka, Japan

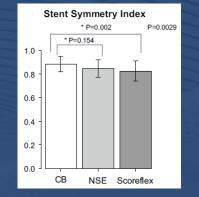
Study Design

 Retrospective analysis of 156 patients treated for calcified coronary artery disease with either Cutting Balloon (n=30), NSE Scoring Balloon (n=39) or Scoreflex Scoring Balloon (n=87) from April 2015 – December 2017

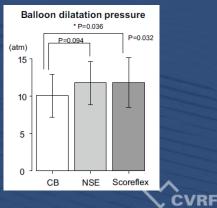

Notable Patient Characteristics

- Patients in all groups had similar characteristics including age, gender, lesion location, Minimum Lumen Diameter, reference vessel diameter and balloon to artery ratio
- However, the cutting balloon patients had a significantly higher rate of severe calcification (83.3%) than NSE (59%) or Scoreflex (44.8%)

Summary of Key Results



Despite a significantly higher percentage of severe calcium, cutting balloon resulted in a statistically significant higher acute gain than scoring balloon.

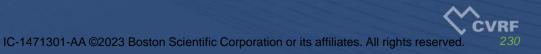


Cutting balloon also had a superior effect on stent symmetry index, meaning that the stent lumen was more symmetrical than with scoring balloon.

This 30% higher acute gain was achieved with cutting balloon despite using a statistically significant lower inflation pressure than scoring balloon.

Brief Summary

WOLVERINE™ Brief Summary


PRECAUTIONS

The device should be used only by physicians trained in the performance of PTCA. If difficulty is experienced during balloon inflation, do not continue; remove the device and do not attempt to use it. Infusion of any medium through the guidewire lumen other than heparinized saline may compromise device performance. Do not attempt to reposition a partially inflated balloon. Do not use a guidewire having a diameter greater than 0.014 in (0.36 mm). Potential ADVERSE EVENTS

Potential adverse events include, but are not limited to, the following:

- Abrupt closure
- Acute myocardial infarction
- Angina or unstable angina
- Arrhythmias, including ventricular fibrillation
- Arteriovenous fistula
- Cardiac tamponade/pericardial effusion
- Cardiogenic shock
- Cerebrovascular accident/stroke
- Coronary aneurysm
- Coronary artery bypass graft surgery
- Coronary artery spasm
- Coronary vessel dissection, perforation, rupture, or injury, possibly requiring surgical repair or intervention
- Death
- Drug reactions, including allergic reaction to contrast medium
- Embolism
- Hemodynamic compromise
- Hemorrhage or hematoma
- Hypo/hypertension

- Infection
- Minor vessel trauma
- Myocardial ischemia
- Percutaneous re-intervention
- Pseudoaneurysm (at vascular access site)
- Pyrogenic reaction
- Renal failure
- Respiratory insufficiency
- Restenosis of the dilated vessel
- Side branch occlusion
- Slow flow/no reflow
- Thrombosis
- Total occlusion of the coronary artery or bypass graft
- Transient ischemic attack
- Vasovagal reaction
- Ventricular irritability/dysfunction
- Vessel trauma requiring surgical repair or intervention
- Volume overload

WOLVERINE™ Brief Summary

CAUTION: Rx only. Prior to use, please see the complete "Directions for Use" for more information on Indications, Contraindications, Warnings, Precautions, Adverse Events, and Operator's Instructions.

INTENDED USE / INDICATIONS FOR USE

The Wolverine Cutting Balloon Device is indicated for use in patients with coronary vessel disease who are acceptable candidates for coronary artery bypass graft surgery, should it be urgently needed, for the purpose of improving myocardial perfusion. In addition, the target lesion should possess the following characteristics:

- Discrete (< 15 mm in length), or tubular (10 mm to 20 mm in length)
- Reference vessel diameter (RVD) of 2.00 mm to 4.00 mm
- Readily accessible to the device
- Light to moderate tortuosity of proximal vessel segment
- Nonangulated lesion segment (< 45°)
- Smooth angiographic contour
- Absence of angiographically visible thrombus

CONTRAINDICATIONS

The WOLVERINE Cutting Balloon Device is contraindicated for use in:

Delivery through the side cell of a previously placed stent as the deflated Cutting Balloon could become entangled in the stent. Coronary artery spasm in the absence of a significant stenosis.

WARNINGS

- Exercise extreme care when treating a lesion distal to a stent. When treating lesions at a bifurcation, the device can be used prior to placing a stent, but should not be taken through the side cell of a stent to treat the side branch of a lesion at a bifurcation.
- The atherotomy process, because of its mechanism of action, may pose a greater risk of perforation than that observed with conventional Percutaneous Transluminal Coronary Angioplasty (PTCA). To reduce the potential for vessel damage, the inflated diameter of the device should approximate a 1.1:1 ratio of the diameter of the vessel just proximal and distal to the stenosis.
- The atherotomy process in patients who are not acceptable candidates for coronary artery bypass surgery requires careful consideration, including possible hemodynamic support during the atherotomy process, as treatment of this patient population carries special risk.
- Balloon pressure should not exceed the rated burst pressure.
- When performing percutaneous atherotomy, the availability of on-site surgical backup should be included as a clinical consideration.

